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Abstract

Determining the amount of sequestered carbon in soils and monitoring soil health
in farmlands is an important climate change problem. Motivated by the lack of
scalable and inexpensive techniques for in-situ soil health monitoring, we focus
on low-voltage nuclear magnetic resonance (NMR) spectroscopy as a promising
new approach and develop a reinforcement learning technique to modulate NMR
pulses for rapid atomic abundance assessment of soils. Our preliminary results
derived using Monte Carlo sampling and parallelized OpenAI Gym training show
the promise of our RL-based approach.

1 Introduction

Maintaining and monitoring soil health is a crucial challenge in the battle against climate change,
particularly in the agricultural sector [1]. Soil degradation diminishes soil fertility and can lead
to desertification, compelling farmers to resort to methods such as deforestation to meet growing
food demand [2]. Furthermore, soil degradation and erosion lead to the release of sequestrated soil
carbon stocks, which make up 2-3 times the carbon content of the atmospheric carbon pool [3].
Hence, even small changes in soil carbon stocks can have disastrous effects on the atmospheric C'O4
concentration. Important challenges in the monitoring of soil health include determining soil carbon
concentration, assessing soil fertility, and identifying heavy metal contaminants. These challenges
are often considered separately, but they share a common goal: accurately determining the atomic
abundance (i.e., atomic concentration) of key soil elements.

Current soil testing techniques are able to identify these concentrations through combusting or reacting
soil extracts and observing the reactions. However, these techniques have fundamental limitations
that hinder their effectiveness for broader climate objectives. Firstly, due to the nature of these
tests, they must occur in controlled laboratory settings, leading to costs (in USD) of $10-$50/sample
for basic fertility and contaminant testing and up to $3000/sample for more comprehensive testing
[4]. Tt has been estimated that to develop a reliable soil profile, soil testing should occur every few
meters [S], meaning that this type of soil testing becomes prohibitively expensive even on the scale
of a single farm. These scalability concerns hinder large-scale data collection efforts, which are
important to identify and detect changes in atomic abundance. Being able to accurately detect these
changes enables us to quantify the effects of different sustainable farming practices [6, 7], as well
as identify opportunities for their implementation. Furthermore, soil carbon quantification methods
incur measurement errors when processing samples, [8]], which undermine the reliability of soil
carbon crediting programs, an integral part of the larger carbon market model for decarbonization.
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These limitations of current common soil testing techniques motivate the design of a reliable,
scalable method for rapid atomic abundance measurement in soils. In this work, we use low-voltage
NMR spectroscopy as a promising new approach for in-situ soil monitoring and present a novel
reinforcement learning framework for modulating low-voltage NMR to perform rapid in-situ atomic
abundance assessment. First, we present a fast, robust simulator for generating large quantities of
NMR spectroscopy data able to simulate the spin dynamics of different soil samples in parallel. We
then demonstrate how to utilize this simulator to train a reinforcement learning agent capable of
modulating an NMR pulse sequence for the purpose of determining the carbon concentrations of
various coffee samples, which we use as a soil simulant.

2 Background

We start with some necessary background for NMR spectroscopy. Nuclear magnetic resonance
is a physical phenomenon wherein the nuclear spins of atomic nuclei contained in a magnetic
field are pulsed with electromagnetic radiation, causing the spins to precess before returning back
in line with the magnetic field. This phenomenon is analogous to a spinning top being knocked
over, precessing before eventually returning to rotation around the vertical axis. Nuclear magnetic
resonance spectroscopy is a measurement technique based on this phenomenon, in which a substance
is placed in a strong magnetic field and is exposed to a fixed sequence of radio-frequency pulses
causing the atomic nuclei to emit energy at different frequencies according to their nuclear spin
characteristics. The electromagnetic emission is measured at an axis perpendicular to the direction of
the magnetic field, giving a signal known as the free induction decay (FID) [Figure [Za]. The Fourier
transform of this signal is computed to obtain the NMR spectra [Figure 2p], and regression-based
techniques are used to compare this spectra to previously sampled spectra for identification and
analysis. NMR spectroscopy is most commonly used in medicine for a procedure known as Magnetic
Resonance Imaging (MRI) to produce high quality images of human anatomy, but also has many
prevalent applications in food science, environmental monitoring, and various engineering fields
[O[10L[11L112]]. A current area of emerging NMR research is centered around developing and applying
low-voltage NMR systems. These systems are of interest for soil monitoring because of their relative
low-cost, as well as their ability to determine atomic abundance in situ. This is a crucial extension to
traditional measurement techniques for atomic abundance, since it addresses many of the scalability
concerns mentioned above.

3 Methods

In this work, we aim to perform atomic abundance assessment using Nuclear Magnetic Resonance
spectroscopy as a candidate procedure. As noted earlier, this assessment is useful for measuring
soil carbon, fertility assessment, and heavy metal contaminant identification, which are all crucial
aspects of maintaining soil health. Traditional NMR spectroscopy relies on applying a fixed pattern of
radio-frequency pulses (which can be seen in Figure[Ik) to the sample of interest and then performing
regression-based techniques between the measured spectra and laboratory measurements. Regression-
based techniques have been shown to fail when applied to samples outside of the training distribution
[[L3]], which often occurs in practice when considering the vast array of chemical compositions of
different soil samples [[14]. Owing to a lack of data, we propose to use reinforcement learning to
learn the best policy for application of radio-frequency pulses in determining atomic abundance. Our
reinforcement learning framework has 3 components: a Monte Carlo sampling procedure to represent
a soil sample as a set of atomic spins, a parallelizable training environment where the agent can
modulate the radio-frequency pulses, and a candidate reward model that will enable us to determine
atomic abundance. We detail each component below.

3.1 Monte Carlo sampling

To train the agent in simulations, we must first create a representation for a soil sample that the
agent can interact with. We represent a soil sample as a collection of atomic spins, where each
spin is characterized by it’s gyro-magnetic ratio ~y, 7} relaxation time, and 75 relaxation time (see
Appendix A). To calculate a representative set of spins for a given soil sample, a Monte Carlo
sampling procedure is used. We begin with the NMR spectra of the soil sample, and propose 3
distributions from which the gyro-magnetic ratio, 73 relaxation time, and 75 relaxation time can be



sampled to determine a random spin. As the initial distributions are up to our determination, the
agent can learn the optimal policy for any specified spin distribution. After a spin is sampled, the
NMR spectra is computed for the current set of spins, and the difference between the target spectra
and the sampled spectra is computed using a weighted average of the absolute mean squared error
and phase mean squared error. If this difference is below a set threshold, the spin is accepted into
the set, and otherwise it is rejected and removed from the set. This threshold is set depending on
the physical parameters of the experiment and decreases as more spins are accepted, which makes
sense in practice because as spins are accepted into the sample, our target spectra should continue to
approach the desired spectra. This procedure is repeated until a desired number of spins are accepted,
or a sampling limit is reached.

3.2 Parallel training environment

Given a set of spins, we built an NMR simulator (see Appendix A) that is a modified OpenAl
Gymnasium environment, capable of simulating spin dynamics given the pulse sequence that is
applied. The state space of our simulator is the measured magnetization in the X and Y directions,
M., M, respectively, as well as the current maximum transverse magnetization Mp,ay,, Which

is calculated by max; /M2, + Mgt. It is important to note that the state does not include any

information about the underlying spins, as would be the case in a real NMR deployment. The action
space is a continuous variable with relatively high magnitude with respect to the larger magnetic field,
as would be in a low-voltage NMR set up. To train an agent capable of handling the wide distribution
of soils, we need the agent to interact with many different spinsets and simulator characteristics such as
the temperature 7', magnetic field strength B, and measurement noise. This motivated an important
step in the training pipeline of our agent, parallelizing the NMR simulator so that the agent learns
from interactions with a variety of spinsets and simulator configurations simultaneously. We utilized
the SubprovVecEnv class built into OpenAl Gymnasium to vectorize our Markov Decision Process
(MDP) - the vectorized MDP formalized as a tuple (S™, A", Ps,,~, R) . Our state and action spaces
have been transformed to be n independent states and actions, however, our probability distribution
matrix and reward function remain the same over all environments and are thus unchanged in the
vectorized MDP. This step is crucial to making this approach feasible, as it allows us to parallelize
training (i.e., process many soil samples simultaneously). This parallelism drastically improves the
speed at which the reinforcement learning model converges to the optimal policy, as well as the
stability of the training due to the averaging of noise across different environments where the same
sample was processed.

3.3 Reward model

An important step in the training pipeline is designing the reward function in a manner such that the
pulse sequence learned by the agent gives information that is valuable for an end-user attempting
to calculate atomic abundance. In this section, we present the design of the reward model used in
the training of our agent, and delve into how this model helps us achieve our final goal. The reward

model for each episode is of the form R = 23:1 ' X Myax,, where T is the total time in the
episode, -y is a discount factor, and My, is the maximum observed transverse magnetization at
time t. The goal of this reward model is to have the learned pulse sequence obtain the maximum
possible transverse magnetization by knocking as many spins into the the transverse direction as
possible. Since our radio-frequency pulse is tuned to only interact with the atomic nuclei of the
element of interest, the maximum magnetization we can achieve is a function of the abundance. Thus,
if the maximum transverse magnetization achieved over the episode is monotonic with respect to the
atomic concentration, then atomic abundance can be learned directly from Mpax,..

4 Results and discussion

We trained a standard PPO agent for 5,000,000 timesteps across a parallelized environment containing
50 spinsets derived from a fixed distribution (see Appendix B). An example pulse sequence that is
learned by the agent can be seen in Figure[Tk. The agent tends to utilize the extremes of the action
space to obtain the maximum transverse magnetization. We then utilize our Monte Carlo sampling
procedure on real NMR spectra obtained from a serial dilution test of caffeine (see Appendix B),
which we use as a soil simulant due to the controllable nature of the underlying atomic concentrations.
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Figure 1: Results from RL Validation Experiments

We then compared the maximum observed transverse magnetization achieved by the reinforcement
learning agent to that achieved by the standard 1D NMR pulse sequence across the spinsets generated
by the Monte Carlo sampling procedure. We can see in Figure [Th that the maximum observed
magnetization achieved by the reinforcement learning agent is monotonically increasing with respect
to the caffeine concentration, however, the same cannot be said for that achieved by the standard
pulse sequence (Ip). Another common method for atomic abundance calculation in standard 1D
NMR is calculating the integral of the observed transverse magnetization, however, in Figure [Tk it
can be seen that this method also fails to achieve monotonicity in the same set up that our agent
achieves monotonicity in.

The success of our agent in achieving monotonicity in cases where standard atomic abundance
techniques fail motivates further exploration into machine-learning for dynamic pulse sequencing.
Furthermore, the relatively low magnitude of the external magnetic field compared to the applied
pulsing field highlights the feasibility of implementing this approach in a low-voltage NMR setup.
While we validate our approach on a simple data set, where coffee is used as a soil simulant, further
work can be done to extend this approach to a larger distribution of real soils. Furthermore, for the
model itself, questions remain about the optimal choices of training hyper-parameters, alternative
reinforcement learning models, and monitoring the spoiling of the underlying spins so that statistically
independent samples can be collected in practice.
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Bloch Equations

The time evolution of the magnetization components M, (t), M, (t), and M_(t) in the presence of a
magnetic field B(¢) can be described by the following differential equations:

M) _ ey x B(1)

7 ey
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Caffeine Concentration Test FIDs Caffeine Concentration Spectra
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(a) Free Induction Decay Signal of Caffeine Samples (b) NMR Spectra of Caffeine Samples
Figure 2: Real NMR Data of the Serial Dilution Caffeine Dataset
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These macroscopic equations, known as the Bloch equations, detail the underlying calculations that
are done to calculate how the spins evolve with respect to time. The gyromagnetic ratio -y determines
how fast the spin revolves around the external magnetic field. B(t), the overall magnetic field, is the
sum of the vectors detailing the external magnetic field, By, and B,,, the magnetic field applied by
the model in the x direction. In our experiment, the ratio of By to the amplitude of the pulsed B, is 1
to 0.2, which is small in terms of typical NMR spectroscopes, but reasonable for a low-voltage NMR
spectroscope employing a permanent magnet. 73 and 7% are the relaxation variables, which detail how
fast the spin returns back to being in line with the external magnetic field after the pulse sequence is
ended. Our NMR simulator uses these equations to determine the state of our environment, however,
the state does not contain information about the spins themselves, but rather the magnetization that is
being observed, as would be the case in practice.

B Validation Data Collection

The dataset used for the validation portion of our experiment consists of NMR scans of a series of
caffeine samples which were repeatedly diluted from one original sample. The raw signals of these
scans can be seen in Figure [Zh, which was taken over 8 hours and then averaged to obtain a one
second interval. This was done in a JEOL NMR and demonstrates the characteristic signal-to-noise
ratio for a highly controlled NMR setup. The Fourier transform of these signals is computed to
obtain the NMR spectra of these samples, which can be seen in figure 2p. Our initial distribution
for the Monte Carlo sampling procedure is obtained from the 99th percentile of points in the sum of
the NMR spectra. This is reasonable in practice as one can gradually collect small soil samples as
this practice is used in situ, and occasionally send a composite sample back to a lab to update the
sampling distribution.
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