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Abstract

Urban Building Energy Modeling (UBEM) is an emerging method to investigate
urban design and energy systems against the increasing energy demand at urban and
neighborhood levels. However, current UBEM methods are mostly physic-based
and time-consuming in multiple climate change scenarios. This work proposes
CityTFT, a data-driven UBEM framework, to accurately model the energy demands
in urban environments. With the empowerment of the underlying TFT framework
and an augmented loss function, CityTFT could predict heating and cooling triggers
in unseen climate dynamics with an F1 score of 99.98 % while RMSE of loads of
13.57 kWh.

1 Introduction

Urbanization is one of the greatest challenges of modern society. Almost one-third of global
greenhouse gas emissions come from buildings and 70% of energy is consumed by urban. As of the
latest available data in 2021, the global population stood at over 7.8 billion individuals [1]. Projections
indicate that in 2050 [2], the world’s population may surpass 9.7 billion, reflecting a substantial
demographic expansion over the intervening years. To address the long-term challenge posed by
urbanization effectively, urban building energy modeling emerges as an imperative and requisite
approach in academic research and urban planning endeavors.

The fundamental purpose of urban building energy modeling is to simulate and analyze the intricate
dynamics of energy consumption within urban environments. Compared to building energy modeling,
UBEM simulates while considering building height, surface coverage, and spatial arrangement,
probing their interactions and discerning their collective influence on energy dynamics at the urban
scale. Swan and Ugursal [3] set a tone in reviewing urban modeling of the residential sector,
subdividing the modeling methodologies into top-down and bottom-up approaches. Specifically,
bottom-up physic-based UBEM methods have garnered attention in recent times [4]. Robinson et al.
developed CitySim to assist urban settlements with sustainable planning and also simulate the energy
use of a few buildings ranging from tens to thousands. Those UBEM methods are reasonably accurate
in simulating the performance of almost any building combination systems [6]. However, customized
urban projects, and optimization problems involving many UBEM evaluations, are time-consuming
and labor-intensive, and based on the scalability, the simulation runtime can be exponentially high if
a broad set of design variations is analyzed.
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Figure 1: Overview of CityTFT. CitySim and CityTFT apply the same weather input while CityTFT
uses simplified building parameters.

Here, we propose a surrogate data-driven approach to accelerate the simulation process in UBEM.
Compared to similar previous works [7–9], we based our work on the extensively used forecasting
model, Temporal Fusion Transformer (TFT) [10]. We extract the static covariate encoder and variable
selection network from the TFT structure while adding a small neural network to model the probability
of triggering heating and cooling needs. The major improvements are: 1.) Sequential input has been
applied in a transformer-based model to improve the temporal accuracy. 2.) A training strategy that
models from weather dynamics and urban interactions to energy demands simultaneously with a
customized loss function. 3.) Improved generalizability for the proposed surrogate model. Urban
planners or Energy Sectors could benefit from urban-level energy demand estimations by the proposed
approach to enhance the decision-making process.

2 Methods

Data Prepration As a surrogate model, this work aims to duplicate the ability of physic-based
UBEM models, CitySim [5], to simulate urban building energy. Two major inputs of UBEM are
urban geometries and weather data. This study utilized the university campus geometries and the
calibrated building parameters from [11] which contains 114 buildings in a wide variety. 13 variables
are extracted from the building geometries to represent the static building covariates. The detailed
transformation method can be found in the appendix. The other requirement of CitySim is weather
information. This study collects 21 Typical Meteorological Year (TMY) files in different climate
zones globally by Meteonorm [12] to obtain fruitful weather dynamics. 12 environmental variables
are served in climate files as the temporal covariates while one additional variable, hour of year, is
added to improve the temporal identification. Those variables are listed in Table 3. The ideal hourly
heating and cooling demands are simulated through CitySim solver for each building which concludes
a dataset with roughly 17 million samples. The sequence length in our training process is 24. All the
building variables, weather data, and electricity loads have been normalized for preprocessing.

Temporal Fusion Transformer The Temporal Fusion Transformer (TFT) is composed of key
elements: a variable selection network, static covariate encoder, and temporal processing, facilitating
precise energy demand modeling. The variable section network is applied to both static building
properties and temporal weather covariates to provide instance-wise variable selection. Linear
transformations are applied to transform each variable into a dmodel dimension vector to match
the subsequent paper for skip connections. Gated Residual Networks (GRN) are utilized for static
enrichment and point-wise feed-forward processes while self-attention layers are utilized for temporal
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feature processing. To decode the transformed latent correctly, the decoder of TFT first applied GRN
to enrich temporal signals with static building latents. Secondly, another self-attention network is
applied to assemble static-enriched features into a single matrix. The attention mechanism here is to
help that each temporal dimension can only attend to features preceding it.

Different from the original TFT, this work aims to predict the energy demands in the same temporal
period i.e. sequential modeling, unlike the purpose of the forecasting mission in the original paper.
Therefore, this work aborts the future encoder part from the model and applies the original observed
temporal features to proceed with the static enrichment and self-attention processing. The static
enrichment is applied to embedded weather representations, and an interpretable attention mechanism
builds the attention matrix in each time step of the enriched features. We also add one more linear
layer with sigmoid activation for probabilistic projection. Heating and Cooling loads are divided into
two variables while cooling loads are negative and heating loads are positive.

Probabilistic Loss: Will it trigger and how much it will cost Since about 30 and 50 percent of
the heating and cooling loads are zero, this work proposes a probabilistic-based loss to handle the
imbalanced data. The loss equation is summarized in Eq. 1 where t is whether heating/cooling
systems are triggered, yP is the probabilistic output produced by the TFT model, a is the actual
heating/cooling loads, and yQ is the quantile projections by the TFT model. Instead of computing
deterministic energy consumption predictions, a probabilistic output of whether the heating/cooling
system will be triggered is computed first. Eq. 2 calculates the loss between the output and the
triggering probability from target loads. On the other side, the quantile loss in Eq. 3 only optimizes
with the projections that are paired with the non-zero loads while q represents the target quantile.
The quantile loss aims to optimize the range of likely target values instead of a deterministic output,
and the probability loss focuses on preventing our networks from predicting smaller values while
optimizing with void loads.

l = lprob(t, y
P ) + lquantile(a, y

Q) (1)

lprob(t, y
P ) =

1

N

N∑
n=1

{−wn(y
P
n · log(tn)) + (1− yPn ) · log(1− tn))} (2)

lquantile(a, y
Q) =

1

N

N∑
n=1

{
q · (an − yQn ) , yQn ≤ an
(1− q) · (yQn − an) , yQn > an

(3)

3 Result & Discussion

Model projections will be compared with the conjectural heating and cooling demands by CitySim
to quantify the effectiveness of our proposed methods. 4 additional simulations by CitySim are
conducted with weather files in different climate zones and the same campus environment to produce
conceptual heating and cooling demands. To assess the effectiveness of the proposed method, a
classic recurrent neural network and a transformer are trained to compare with the TFT model. All
models are trained for 400 epochs using AdamW Optimizer in learning rate as 1e-4.

Ability to simulate unseen climate dynamics The probabilistic and deterministic outputs from the
TFT model are compared with the CitySim simulation results. Extra 4 simulations are conducted
to evaluate the ability of our CityTFT model in unseen climate dynamics. The usage of climate
files could be referred to Table 6. The prediction from CityTFT is made by observing probabilistic
and quantile output at the same time. If the probability at a certain time step is over the threshold,
then the prediction at the same time step is filled with the median projection in the quantile output.
Fig. 2 demonstrates the predicted loads and ideal loads by CityTFT and CitySim. Each of the three
models demonstrates a proficient ability to estimate both heating and cooling demands concluded
in Table. 1. In particular, CityTFT exhibits the highest level of proficiency in accurately predicting
energy demands, whereas the other two models occasionally display tendencies to underestimate or
overestimate the regressed values.

Ability to anticipate the trigger of heating and cooling. To evaluate the probabilistic prediction,
we compare the F1 score of three different models while classifying the CitySim results into a
binary class as zero and non-zero. Table 1 indicates that all three models have a great ability to
predict whether heating and cooling are triggered. We could also see that the scores in cooling
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Figure 2: Comparison between ideal and predicted heating/cooling loads

loads are normally lower than those in heating loads shown in Appendix A.4. The reason is that,
in physic-based UBEM tools, triggering heating systems is more straightforward which related to
weather dynamics. In contrast, the activation of cooling systems is intricately affected by weather,
solar heating, and human comfort examination.

However, even though the transformer model is predicting slightly worse than the other two, it
shows comparable output in Fig. 2 and lower MAPE values in Table 1. We could observe that the
predictions from the transformer are even closer than those from RNN. RNN, on the other hand,
could better predict the triggering probability while the regressed projection is worse. Those findings
could be observed in the demonstration in Fig. 2. The debate between the self-attention and recurrent
mechanisms is worth investigating more deeply. The findings suggest that employing a hybrid
structure, such as CityTFT, can yield exceptional performance in this task when contrasted with the
exclusive utilization of either RNN or self-attention models.

F1 score (%) Non-zero RMSE (kWh) Total RMSE (kWh) Non-zero MAPE (%)
RNN 91.91 114.06 75.91 136.89

Transformer 91.33 118.43 79.74 113.65
TFT 99.98 21.34 13.57 11.62

Table 1: F1 score, RMSE with total loads and non-zero loads Comparison

4 Conclusion

This work proposes CityTFT, a temporal fusion transformer, to model the urban building energy in
unseen climate dynamics. This reduces the barrier for individuals to possess a meticulously designed
building geometry for simulating energy demand, thereby accelerating the more precise quantification
of energy modeling within the context of climate change. This permits decision-makers to conduct a
thorough exploration of energy usage across multiple buildings and climate zones during the design
phase, with reduced reliance on intensive simulation efforts. From a technical perspective, several
facets merit additional assessment. A thorough examination should be made to evaluate CityTFT on
climate change data like CMIP6. An ablation analysis involving building parameters and weather data
could be additionally integrated to assess the lower limit of CityTFT’s performance. The community
could realize substantial benefits in the event that CityTFT could operate comparably on more concise
input from publicly available data sources, such as satellite observations or open street map data.
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A Appendix

A.1 Input Variables in CitySim and CityTFT

Table 2 concludes the processed input for CityTFT. All the parameters in this table could be traced
back to the geometries or some material paramters in the original CitySim XML file input.

A.2 Distribution of loads: With or Without zero

Fig. 3 indicate the distributions of heating and cooling load with and without zero loads. The upper
two histograms are for heating loads while the lower two are suggesting cooling loads. Both heating
and cooling distributions show less skew after trimming out zero values. In general, the model
should be relatively easy to fit with the target distribution when the skewness is lower. The y-scale
is also different in that the first bar in loads with zero demonstrates dominant height as the major
distribution. This implies that when only employing regression loss to optimize the model, there is a
large likelihood of the model becoming overly responsive to input variables with minimal values,
consequently leading to the generation of predictions that systematically underestimate the overall
energy demands.
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Building Variables
Building height

Building perimeter
Wall glazing ratio

Footprint area
Heating setpoint temperature
Cooling setpoint temperature

Average walls U-value
Roof U-value

First floor U-value
Average windows U-value (W/m2k)
Average walls short-wave reflectance

Wall short-wave reflectance
Roof short-wave reflectance

Table 2: Building Properties used in the
training dataset

Weather Variables
Day of month

Month
Hour

Diffuse radiation horizontal
Beam

Temperature
Surface temperature

Wind speed
Wind direction

Relative humidity
Precipitation

Cloud cover fraction

Table 3: Used Weather variables in TMY
filest

(a) Distribution of heating loads

(b) Distribution of cooling loads

Figure 3: Distribution comparison between all loads and non-zero loads.

A.3 Climate data collection & Splitting datasets

Table 6 lists all the climate files used in this study.

A.4 Result metrics with only heating or cooling loads

While calculating the overall performance in the previous section, separate metrics for heating and
cooling loads are also computed and shown in Table 4 and 5. Each of those models performs better in
predicting heating loads than cooling, no matter in predicting triggering or in quantile regression.
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F1 score (%) Non-zero RMSE (kWh) Total RMSE (kWh) Non-zero MAPE (%)
RNN 93.22 110.55 64.95 287.37

Transformer 93.05 95.19 61.30 205.88
TFT 99.99 18.24 9.46 12.92

Table 4: Heat only result

F1 score (%) Non-zero RMSE (kWh) Total RMSE (kWh) Non-zero MAPE (%)
RNN 90.10 115.78 85.48 61.86

Transformer 88.96 12.845 94.66 67.66
TFT 99.97 22.73 16.70 10.97

Table 5: Cool only result
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Table 6: Location information of TMY climate file for CitySim and CityTFT
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