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Abstract

Climate General Circulation Models (GCMs) constitute the primary tools for cli-
mate projections that inform IPCC Assessment Reports. Calibrating, or tuning
the parameters of the models can significantly improve their predictions, thus
their scientific and societal impacts. Unfortunately, traditional tuning techniques
remain time-consuming and computationally costly, even at coarse resolution.
A specific challenge for the tuning of climate models lies in the tuning of both
fast and slow climatic features: while atmospheric processes adjust on hourly to
weekly timescales, vegetation or ocean dynamics drive mechanisms of variability
at decadal to millenial timescales. In this work, we explore whether and how
History Matching, which uses machine learning based emulators to accelerate and
automate the tuning process, is relevant for tuning climate models with multiple
timescales. To facilitate this exploration, we work with a climate model of interme-
diate complexity, yet test experimental tuning protocols that can be directly applied
to more complex GCMs to reduce uncertainty in climate projections.

1 Introduction

General Circulation Models (hereafter GCMs), widely used to produce simulations of the past, present
and future climate, which subsequently inform the IPCC [1,2], include parameters that are more or
less constrained by theory or observations (for example snow albedo). Some of these parameters are
introduced as the physical equations are discretized to enable numerical computation, for example
related to unresolved or ill-resolved processes which effects are parameterized (for example horizontal
diffusion in the ocean). Even when direct measurements of these parameters are available, they may
not be optimal for a given model as the latter remains one imperfect mathematical representation of
the Earth system.

Calibration of climate model parameters, aka funing, is driven by two motivations. First, it allows
increased performances on specific prediction tasks: it is the Fitness-for-Purpose paradigm [2].
Climate model simulations will gain importance in the years to come with the need for accurate
predictions of climate change to guide adaptation, which constitute climate services [3]. Secondly,
tuning the models can also help quantifying their uncertainties [2], in the process of improving Earth
modelling as well as understanding the causes of climate change to inform mitigation policies.
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GCMs are state-of-the-art in climate modelling: the 2021 Nobel prizes in Physics even honored some
of the pioneering work done to support the development of GCMs [4]. However they come with a
computational price: running a GCM for a hundred years prediction can take up to several weeks on
the top High-Performance Computing centers. This makes traditional tuning-by-hand techniques too
costly. Extensive grid search [5] techniques are also near impossible in practice which call for more
intelligent techniques based on surrogate modeling. History Matching (HM) is a well established
technique [6,7] that can improve and accelerate this tuning, and that recently attracted attention in
the climate modeling community. HM makes use of an emulator to replace the climate model in the
exploration of the parameters’ space. For example, Lguensat et al. [8] applied HM to tune a classical
toy model, Lorenz—96, coupling slow and fast variables as a simple analogy to an ocean-atmosphere
model, they highlight the challenges induced by the multiple timescales. In this work, we consider
iLOVECLIM [9], an Earth system Model of Intermediate Complexity (EMIC), which presents way
more complex physical processes than a simple toy model. Following Loutre et al. [10], Shi et al.
[11], we explore the parameters’ sensitivity of iLOVECLIM for present-day climate simulations, we
then perform a HM-based tuning of this model and present our conclusions.

2 Materials and Methods

Model, choice of parameters and ground truth We consider the iLOVECLIM Earth system
model, derived from the LOVECLIM model by Goosse et al. [9]. It consists of several coupled
components: ocean and sea ice (CLIO) with a 3° x 3° resolution, atmosphere (ECBilt) with a 5.6°
x 5.6° resolution and a module for vegetation (VECODE). iLOVECLIM closes the carbon cycle
through these three components. For our general tuning setup, we take nine land, ocean or atmosphere
related parameters to calibrate with the HM algorithm. Based on [10, 11] in addition to our experts’
intuition, we set for each parameter an a priori range interval that constitutes the search space (Table
Min A.4). We select 15 yearly atmospheric and 9 monthly oceanic variables from which we derive
mean metrics for further use and analysis (Table[5|in A.4).

Prior to launching experiments, and because iLOVECLIM simulations are distant from climate
observations, we consider a reference simulation from iLOVECLIM to use as our ground truth, and
perform a 5000-yr-long stationary simulation reflecting present-day climate. All of the simulations
then start from this stabilized state of iLOVECLIM, obtained with default parameters. We place
our study in a "perfect model" setting as in [3]. Knowing the ground truth parameters allows us to
evaluate better the performances of HM on iLOVECLIM.

Reducing the parameters’ space with HM HM uses reference data (our ground truth here) to rule-
out any parameter settings which are implausible, because they are expected to produce simulations
that are too different from the reference. Using few runs of iLOVECLIM simulations, HM trains a
Gaussian Process based emulator (RBF kernel, see [8]) that can interpolate the search space at lower
cost. An implausibility score is used to rule out implausible portions of the search space. The reduced
search space, also called the Not Ruled Out Yet space or NRQY, is the result of each HM iteration or
wave. Figure 1 summarizes this process.

The implausibility score (see A.1) is then based on metrics of the model: here we select time average
atmospheric and oceanic metrics (see previous section). Following Lguensat et al. [8], a major
difference in our application of HM from D. B. Williamson et al. [12] and Hourdin, Williamson, et al.
[13] relies on the use of Principal Component Analysis to reduce the dimensionality of the metrics
vector: the Gaussian Process is fitted on these reduced metrics. As we want to tune 9 parameters, we
run about 10 simulations per parameter, i.e 90 simulations in each wave. We stop iterating when the
NROY is sufficiently reduced (e.g. less than 0.5% of the initial space).

Selection of candidates and quality assessment At the end of the HM algorithm, we are left with
a final NROY. If the HM procedure leads to only few candidates, we select them all. Otherwise, an
option could be to use a k-means algorithm on the last NROY, as in [8]. The optimal number of
clusters is determined via the silhouette score. We then make sure the k-means centroids are in the
NROY before using them for evaluation. To assess the quality of the candidates, we compare how
close the variables’ distributions from their corresponding iLOVECLIM simulations (in Table ) are
to the reference, using the Kullback—Leibler divergence (KL-div) following [8]: the lower the score,
the closer the distribution is to the reference.
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3 Experiments and Results

Sensitivity analysis In a sensitivity analysis of iLOVECLIM by Shi et al. [11], they concluded
that all of the ocean parameters were only a little sensitive in the time scale of thousands of yr.
This surprisingly disagrees with the role played by the ocean in climate variability at centennial to
millennial time scales, which has earned it the title of the slow component of climate.

We investigated the sensitivity of the parameters when using only atmospheric metrics (Shi setup)
and in coupled mode when adding the oceanic metrics, with 5 and 20-yr means. To assess the
level of sensitivity of a parameter, we considered the following characteristics of the 2D-NROY's
panels (Figure[3]in A.2): the size (the smaller the NROY for a given parameter, the more sensitive
iLOVECLIM is to this parameter), the noisiness (the more discretized the NROY, the less sensitive a
parameter, sort of connectedness), the optical depth or specificity (the higher the optical depth, the
more plausible parametrizations there is in a given area).

Table 1: Qualitative analysis of the sensitivity of iLOVECLIM parameters, as compared to Shi et al.
[4] and our own experiments.

Parameter Domain Shi’s sensitivity Shi setup’s sensitivity Test setup’s sensitivity
ampwir atm Very sensitive Sensitive Sensitive

expir atm Very sensitive Sensitive Sensitive

relhmax atm Very sensitive Very sensitive Highly sensitive
cwdrag atm Sensitive Sensitive Very sensitive

alphd land Sensitive Sensitive Sensitive

cgren land Not very sensitive  Not very sensitive Sensitive

ai ocean Not very sensitive  Not very sensitive Very sensitive

aitd ocean Not very sensitive  Not very sensitive Sensitive

avkb ocean Not tested Very sensitive Highly sensitive

We obtained similar sensitivity results for [Shi setup] as for the original study. This analysis reveals
that oceanic metrics are crucial to tune not only the oceanic parameters but can help improve
tuning of land and atmospheric parameters as well (Table [I)), by reducing more efficiently the
parameters’ space than with atmospheric metrics only, as [11] suggested. We also highlight that
the temporality of the metrics is important for the tuning, as computing 5-yr-means is the best
when considering atmospheric metrics alone, while computing 20-yr-means seems optimal when
considering atmospheric and oceanic metrics (Figure[3]in A.2).

Tuning of iLOVECLIM But are 20-yr-long means enough to tune oceanic parameters? Following
the steps described in Section 2, we performed HM with mean metrics over 20 and 100-yr-long
simulations. We ended up with 3 candidates after wave 2 for 20-yr-means (M20d), and 7 after wave 1



with k-means selection (M20k). We select 6 candidates with k-means for 100-yr-means (M 100k).
For consistency, we compute the KL-divergence using 100-yr-simulation for all the setups. It also
ensures the KL-divergence is defined for all metrics, as we only have yrly points for atmospheric
data. Table 2] gathers the characteristics as well as the performances of these three experiments. For
more details on the individual KL-div medians of the candidates and the NROYs, see Table [3]and
Figure[in the appendix.

Experiment M100k M20k M20d
Mean computed over 100 yr 20 yr 20 yr
Candidate selection method k-means k-means  direct
Selection performed after wave num- 3 1 2

ber

NROY size after step 2 0.0044%  0.0307%  0.0003%
Optimal number of clusters > 2 for 6 7 3
k-means

Number of candidates in NROY 6/6 6/7 3/3
Number of candidates in NROY with  6/6 3/6 3/3
finite KL-div

Best candidate KL-div median 0.1467 0.1153 0.1910
Mean of 3 best candidates KL-div me- 0.1746 0.2053 0.2332
dian

Table 2: Summary of the three tuning experiments.

Overall, the experiments produce candidates with similar KL-div median. As no strategy stands out
from an individual candidate perspective, it seems best to consider ensemble modelling techniques:
instead of searching for the best candidate, we evaluate strategies on several candidates. This
is a very common technique, used in the machine learning community that helps improve the
prediction performances and also quantify uncertainties, in the spirit of the IPCC Coupled Model
Intercomparison Project or the Perturbed Parameter Ensemble technique (PPE) [2]. Also, k-means
have been proven efficient to select parameters’ sets for ILOVECLIM. Looking at[2] using 100-yr-
means provides more reliable candidates than 20-yr-means for ensembling, but the latter can also find
better individual candidates (best performance M 204, see[3). The 20-yr-mean failing on KL-div test
(M20k) reveals that some low frequency behaviour is missed as compared to 100-yr-means: perhaps
the NROY was not reduced enough. However this strategy is more discriminant in the first waves
(faster reduction of the NROY for M20d) which could be interesting in the acceleration of the tuning.

Acceleration of the tuning What do we lose exactly with 20-yr-long simulations? The NROY
after wave 1 for 100-yr-means has 1.8488% of the original space left, against only 0.0307 % with
20-yr-means. It may indicate that if a simulation is too far from the ground truth in the beginning,
it is safe to rule it out immediately. We then compare M20 and M 100 on the simulations obtained
from parameters’ sets still considered plausible after the first wave (i.e in the first NROY), versus
simulations from which the parameters are not in any of the experiments’ first NROY's considered
(blue lines, see Figure[2). This experiment is really close to PPE [2], as we perturb the initial system
of one model by changing the parameters’ set.

We observe again that the simulations in the first NROY are better constrained, more centered around
the truth and less dispersed than the simulations outside of the NROY's (blue lines). Oceanic variables
present more diversity in their convergence patterns, such as a compensation effect in AABex: the
mean metrics on 100 yr is not adapted here as it compensates the extreme values, allowing the
selection of oscillating series around the ground truth, when 20 yr directly select steadier series.
We observe a short-term drift in Fc30A: the M 100 series start to converge to the truth only after
20 yr, here 100-yr-means are more interesting than 20-yr-means. Finally, S1mo shows overfitting
behaviour for both M20 and M 100 as some simulations start diverging a lot from the truth after 50
yr of simulation. Atmospheric variables converge quickly. They are pretty sensitive to the initial
perturbation, making M20 strategy more discriminant, even if a few simulations can still diverge in
the long term (pp panel in Figure 2). These observations make both short (first years) and long-term
metrics significant for the NROY reduction, and should be considered when designing a HM tuning
strategy.
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Figure 2: Evolution of mean metrics over time for M20 (orange) and M 100 (red). The year O is the
start of the simulations, before we plot the ground truth only. The time scale is non-linear to represent
more precisely the convergence patterns in the first years of simulation. The first row displays oceanic
variables , the second atmospheric ones.

4 Conclusions and Future work

In this work we showed that tuning simultaneously the atmospheric and oceanic parameters is
advantageous, as adding oceanic metrics improve the constraints on parameters from land, atmosphere
and ocean domains at the same time. Comparing metrics calculated over 20 yr and 100 yr long
simulations for the tuning, we found the M 100 strategy safer from an ensemble perspective, but
M?20 strategies remain promising for the acceleration of the tuning in the first waves. We strongly
recommend to take these results into account when designing semi-automatic tuning protocols for
more complex GCMs, although it remains to move from this perfect model setup towards tuning
against real observations, which is not straightforward in a model of intermediate complexity.

Gaussian Process based History Matching is on its way to become a reference tool for tuning climate
models, although many details in the implementation into the tuning procedure of climate models are
left for exploration, such as the tuning of parameters that induce anomalies at different time scales.
Applying the method to a climate model of intermediate complexity, illustrates a few caveats that may
emerge when tuning more complex GCMs against observations. We hope that advances in machine
learning based surrogate modeling can benefit to HM and pave the way for a faster and less costly
tuning of GCMs, as compared to current practice [14], in order to reduce uncertainties in their climate
predictions and related societal impacts.
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A Appendix

A.1 TImplausibility score

Following Lguensat et al. [8], we define the implausibility as a distance measure between the PCA-
tranformed metrics f(p) and the PCA-transformed observations of the real system z (different to
the actual metrics y, due to biases in the instrumental measurement). Our emulator is minimizing
[|z — f(p)|| (we choose ||.|| as the Mahalanobis distance). In reality, with our limited number of
simulations, we only have access to the expectation E(f(p)) and the variance V(f(p)). We then
define the implausibility as follow:

I(p) = Iz = E(f®0))ll = (z = E(f(®)" (Ve + Vi + V(f(p)) "' (z = E(f(p)) M

with V, the error variance of observations and V;, the error variance due to the simulator uncertainties
(see [12]). The NROY regionis {p : I(p) < T'}, with T' = 3 using the Pukelsheim rule.

A.2 Sensitivity analysis of iLOVECLIM

Analysing time variability of a few oceanic and atmospheric metrics reveals that the reference
simulation has a mainly decadal variability, so we work with 20-yr-long simulations, and want to
compare the History Matching performances with:

* [Shi setup]: Mean metrics computed on 15 atmospheric variables from [4]

* [Test setup] We add our 9 oceanic variables to the precedent setup (see Table [5)).

We perform their means over the last 5, 10 and 20 yr of the simulations for both setups.



From all the experiments, the best outcomes, that is to say the most reduced NROY parameter space,
were obtained with the mean metrics calculated over the last 5 yr for [Shi setup] (Figure 3], left) and
over the last 20 yr for [Test setup] (FlgureE[ right). In both cases, parameter values used to produce
the reference simulation are included in the final NROY.

Remaining space: 00155 000

[Shi setup] Wave 2 [Test setup] Wave 1

Figure 3: HM NROY: Using atmospheric mean metrics only, computed over the last 5 yr (left) and
using atmospheric and ocean mean metrics, computed over the last 20 yr (right). The left-hand-side
color bar is the implausibility score (the greener the more plausible, subplots to the bottom left
of the diagonal), the right-hand-side color bar is the optical depth (the higher the more plausible
parametrizations there is in a given area), and the black point locates the parameter values used
to produce the reference. The background color of the diagonal indicates the component of the
climate system directly affected by the parameter : blue for ocean parameters, white for atmosphere
parameters and green for land parameters.

To assess the level of sensitivity of a parameter, we consider the following characteristics of the
2D-NROYs panels:

* the size: The smaller the NROY for a given parameter (the larger red/grey areas in the two
respective subplots), the more sensitive iLOVECLIM is to this parameter. Indeed, a large
NROY means we can choose whatever value for this parameter and it will not affect much
the model solution (for the metrics considered in the sensitivity assessment).

* the noisiness: Intuitively, the noisiness is a perturbation of our main signal, here the
discretization of the NROY considered. The noisier the NROY, the less sensitive a parameter,
as the algorithm cannot clearly identify a single plausible area. This characteristic can be
defined more rigorously with the mathematical terminology of connectedness in topology.
A connected space is a topological space that cannot be represented as the union of two or
more disjoint non-empty open subsets. For example, the 2D-NROQY is a connected space in
the relhmax/alphd panel, but not in the relhmax/ai panel, in which there are several disjoint
connected spaces called connected components. We interpret a space as "noisier" the more
connected components it has, and " more compact" when it is a connected space (only one
connected component) or has fewer connected components.

* the optical depth or specificity: The optical depth is the fraction of configurations with
implausibility smaller than the predefined threshold. In other words, in a 2D-NROY, the
higher the optical depth, the more plausible parametrizations there is in a given area, in the
other parameters dimensions. Having high optical depth scores means the HM is specific, as
it precises regions more plausible than others within the same NROY.



Following this methodology, we synthesize the sensitivity of iLOVECLIM to land, ocean and
atmosphere parameters in Table|[T}

Looking at Table[T} we can see that we obtained similar sensitivity results for [Shi setup] as for the
original study [11]. The diminution of global sensitivity for ampwir and expir can be explained by
our method to evaluate sensitivity: with History Matching we are studying the sensitivities of all
the parameters taken together as a set, and not one by one. Indeed in the [Shi setup] plot (Figure
[l left), the 2D-NROYS are noisy and large in the ocean and land related panels, but more compact
and reduced in the atmospheric ones. All in all, our [Shi setup] reproduces Shi et al.’s conclusions,
allowing us to use it as the reference for our experiments.

When comparing the two NROYs in Figure [3] we see that the parameters’ space is more reduced
for the [Shi setup] (0.0155% of the initial space) than for the [Test setup] (0.0307% of the initial
space), even if comparable. However, two waves were needed to obtain this results when using only
atmospheric metrics, instead of one with both atmospheric and oceanic metrics.

However, when looking at the [Test setup] plot (Figure [3] right), we see that adding the oceanic
metrics reduces the noisiness of the NROY for all the parameters compared to the [Shi setup].
Furthermore, adding the oceanic metrics increases the sensitivities of not only oceanic parameters
like ai, aitd or avkb, but also of the land parameter cgren or the atmospheric one cwdrag, that have
less noisy and more reduced NROYs. This is a new result from [4], that did not consider oceanic
metrics at all, but discussed that they may be important to the tuning of atmospheric parameters.

Furthermore, two already sensitive parameters, relhmax (atm) and avkb (ocean) are even more
specified by the History Matching algorithm with atmospheric and oceanic metrics. Indeed when
looking at the optical depth, the values are mostly around 0.002 in the Shi setup, except for the
relhmax/avkb panel. In the Test setup, we have larger and numerous regions with an optical depth
greater than 0.006, almost all centered in the ground truth (in relhmax/avkb but also in the ai and
aitd planes for both relhmax and avkb). We thus have more privileged plausible regions than without
oceanic metrics. This behaviour was replicated in the experiments with different temporality of
metrics, confirming that it is the presence of oceanic metrics that is at stake here.

Finally, our experiments tell us about the importance of temporality of the metrics. In general, the
more years are used in the computation of the means, the more reduced the global NROY is at wave
1. However at wave 2, when using atmospheric metrics only, the best outcome is with 5-yr-means.
It is coherent with the "fast" variability of the atmosphere. For atmospheric and oceanic metrics,
computing 20-yr-means is still optimal for both waves, which is also coherent with the "slow"
variability of the ocean discussed in 3.a.

A.3 History Matching tuning experiment

Figure @] displays the NROYs after step 2, from which we select our candidates. Table 3] gathers the
individual KL-div median of all the candidates. The best candidate for each experiment is in bold,
showing us that a bad method for ensemble techniques can lead to good candidates individually.
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Figure 4: NROY's before candidate selection (Step 3)



Table 3: KL-divergence of candidates

Candidate ID Median of KL-divergence mean metrics

M100
M100g2
M100g3
M100g4
M100gs5
M100ge
M20x,
M20o
M2043
M204
M2045
M?2046
M?204
M2042
M?2043

0.1715

0.4446

0.5568

0.1467

0.2351

0.2058

Infinite KL-div for 3 variables
0.2548

Infinite KL-div for 2 variables
Infinite KL-div for 1 variable
0.2458

0.1153

0.2075

0.1910

0.3011

A.4 Parameters and metrics

This section provides the setup for reproducing our History Matching experiments: the parameters to
tune in Table [ the variables from which we derive our mean metrics in Table [35]



Table 4: Selection of parameters to study and their characteristics
Parameter Module Definition Default Range Range origin  Shi’s Sensitiv-
ity
ampwir ECBilt- Scaling coefficientin 1 [0.5,1.5] [4] Very sensitive
atm the longwave radia-
tive scheme
expir ECBilt- Exponent in the 04 [0.2,0.6] [4] Very sensitive
atm longwave radiative
scheme
relhmax ECBilt- Precipitation also oc- 0.83 [0.5,0.9] [4] Very sensitive
atm curs if the total pre-
cipitable water below
500hPa is above this
relevant threshold
cwdrag ECBilt- Drag coefficient to 2.1e-3 [1.0e-3,4.0e-3] [4] Sensitive
atm compute wind stress
alphd ECBIilt- Albedo of snow 0.72 [0.6,0.9] [4] Sensitive
land
cgren ECBilt- Increase in snow/ice 0.04 [0.01,0.10] [4] Not very sen-
land albedo for cloudy sitive
conditions
ai CLIO- Coefficient of 300 [200,1000] [4] modified Not very sen-
ocean  isopycnal diffusion sitive
(m?s™h)
aitd CLIO- Gent-McWilliams 300 [200,1000] [4] modified Not very sen-
ocean thickness diffusion sitive
coefficient (m?s—1)
avkb CLIO- Minimum vertical dif- 1.5e-5 [1.0e-5, 1.0e-4] [3] modified Not tested
ocean  fusivity for scalars
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Table 5: Output variables (24) of LOVECLIM from which we derived our metrics for History
Matching

Name Domain Definition

q atm Specific humidity
ts atm Surface temperature
bm atm Bottom moisture
shf atm Surface sensible heat flux
Ihf atm Surface latent heat flux
r atm Relative humidity
alb atm Surface albedo
Ssr atm Surface solar radiation
tsr atm Top solar radiation
str atm Surface thermal radiation
ttr atm Top thermal radiation
evap atm Surface evaporation
pPp atm Total precipitations
sp atm Surface pressure
SNOwW atm Total snow fall
ADPro ocean  Maximum of the meridional overturning streamfunction in the North
(Sv)
AABex  ocean  Maximum of the meridional overturning streamfunction in the bottom
cell (Sv)
Fc30A ocean Meridional heat flux in the ocean at 30°S (PW)
Tlmo ocean  Difference of sea surface temperature between model and observation
(°C)
S1mo ocean Difference of sea surface salinity between model and observation (°C)
VOLN ocean  Seaice volume in the Northern Hemisphere
VOLS ocean  Same in Southern Hemisphere
A15N ocean Sea ice extent (15%, i.e calculated as the total area (km2) of grid cells
with sea ice concentrations (sic) of at least 15%) in the Northern Hemi-
sphere
A15S ocean Same Southern Hemisphere
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