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Abstract

Clouds containing ice particles play a crucial role in the climate system. Yet they
remain a source of great uncertainty in climate models and future climate projec-
tions. In this work, we create a new observational constraint of regime-dependent
ice microphysical properties at the spatio-temporal coverage of geostationary satel-
lite instruments and the quality of active satellite retrievals. We achieve this by
training a convolutional neural network on three years of SEVIRI and DARDAR
data sets. This work will enable novel research to improve ice cloud process un-
derstanding and hence, reduce uncertainties in a changing climate and help assess
geoengineering methods for cirrus clouds.

1 Introduction

Clouds containing ice particles cover 22 % of Earth’s surface at any moment [9]]. They modulate
incoming and outgoing radiation [14] and contribute to the majority of global precipitation [18]].
Yet, we lack understanding about cloud formation and evolution which leads to large uncertainties
in climate projections. Clouds containing ice particles can be distinguished into cirrus clouds and
mixed-phase clouds. Cirrus clouds contain only ice crystals, are typically optically thin, occur at high
altitudes at temperatures below -38°C [20]], and have on average a warming effect [9]]. Mixed-phase
clouds contain a mix of ice crystals and supercooled cloud droplets. They are thicker and usually exert
a cooling effect [[11]]. Key to process understanding are properties such as ice water content (IWC)
and ice water path (IWP). The former is a measure of the ice mass per unit volume and is vertically
resolved while the latter is its integration along a vertical column. Ice properties are projected to
change in a warming climate and may amplify or dampen global warming [[16]].

Current observational constraints are mainly two types of satellite retrievals. On the one hand,
multiple studies e.g. [13}[21}[10] have used polar-orbiting active satellite instruments like CALIPSO’s
lidar [23] and CloudSat’s radar [22] to analyze microphysical properties of ice clouds. These instru-
ments retrieve cloud properties by emitting electromagnetic waves and measuring the backscattered
signal. The main benefit is that active instruments are able to provide a vertical profile of cloud
structures. Due to the narrow swath of the satellite overpass CALIPSO and CloudSat have a revisiting
time of 16 days which is a much coarser temporal scale than necessary for studying clouds where
processes act between seconds to hours [17]. In this work, we will use the DARDAR [3]] data set
which combines CALIPSO and CloudSat retrievals. On the other hand, passive geostationary satellite
instruments such as SEVIRI onboard the Meteosat satellite [2]] retrieve a top-down 2D view of Earth’s
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surface every 15 minutes by measuring the reflected solar radiation and intensities of terrestrial
infrared radiation. Previous studies have combined geostationary and actively sensed retrievals for
IWP predictions [} [12], but the context of cloud regime was not considered unlike in this work.

The objective here is to provide regime-dependent IWP with high spatio-temporal coverage. To
this end, we train a convolutional neural network (CNN) that predicts IWP for cirrus and mixed-phase
clouds from SEVIRI data which is supervised by co-located IWP retrievals from DARDAR. Unlike
previous work, the model proposed here provides insight into both ice regimes independently.

2 Dataset

The dataset used for this study contains three years of multi-spectral
images from SEVIRI and vertically-resolved DARDAR IWC swaths.
We identify the matching DARDAR overpasses for every SEVIRI 20
image and resample them to the native SEVIRI horizontal resolution

of 3km x 3km. Due to the high temporal resolution of 15 minutes and -3 "

the long revisiting times of DARDAR, any SEVIRI image contains = 0

at most one DARDAR overpass, resulting in a minor fraction of a 8 -10

given SEVIRI image that can be co-located with DARDAR data. -20

Note, that many SEVIRI images do not contain any DARDAR < 4
overpass. Figure [I] visualizes an exemplary SEVIRI image with -20 -10 0 10 20
its matching DARDAR swath. Instead of using the whole vertical longitude

column of DARDAR IWC as target data, we integrate the IWC for _ .

. . . P . - Figure 1: 10pm channel for single
cirrus and mixed-phase regimes resulting in an ice-regime dependent SEVIRI observation from 2007
IWP. With this approach, we keep a key aspect of vertical cloud (54 (0:12:43 with co-located
structure and ice distribution through the atmosphere while reducing pARDAR TWP. Note that the
the output from 419 vertical levels to 2. We chose a domain from DARDAR swath is magnified for
30°W to 30°E and 30°N to 30°N, resulting in 1984 x 1792 pixels per better visibility.

SEVIRI image in its native resolution. For training and validating the

neural network, we create non-overlapping patches of size 64 x 64

and select only the patches that contain co-located DARDAR data, resulting in 160,137 patches for
the years 2007-2009. Formally, our dataset is described as:

o X ¢ RI60137x64x64X9 for the nine infrared channels of SEVIRI. Three visible channels are
omitted as they are only available at daytime.

* Ysparse € RIO0I37X64x64%2 for the IWP of cirrus and mixed-phase regime derived from
DARDAR ice water content. Note, that while being on a 64x64 grid, only a small subset of
the grid points contain data, i.e. along the DARDAR overpass.

o M = 7300137x64x64x1 for the binary overpass mask indicating the location of the satellite
overpass.

A considerable challenge from the machine learning perspective is the sparsity of the target data. Yet,
our model, once trained and validated, is able to produce IWP predictions for cirrus and mixed-phase
clouds at high spatio-temporal coverage for all available SEVIRI images, resulting in full image
predictions for 9.1 million patches of size 64 x 64.

3 Methodology

3.1 Problem setting

The outlined task can be formally described as learning a mapping f : X = RO4x64x9 5y —
RO4%64X2 where z € X is representing SEVIRI channels and y € ) the IWP of cirrus and mixed-
phase clouds. Note that at training time, a prediction §j € ) is masked to a narrow swath using the
corresponding overpass mask m € M and the loss Li(gjsparse7 ysparse) is calculated on the sparse
data only.



3.2 IceCloudNet architecture

The backbone of IceCloudNet is a U-Net [19] architecture made up of ConvNeXt [15] blocks.
ConvNeXt blocks are state-of-the-art convolutional modules based on the ResNet [[7] architecture,
improved with multiple macro and micro design choices inspired by transformer models, such as
ViT [3]. Figure [2] visualizes the processing pipeline, where SEVIRI input data z € X is fed into
the network predicting the values of cirrus and mixed-phase IWP ¢ € ). The orange lines in the
predictions show the DARDAR overpass mask m € M, i.e. where target data for supervision is
available. Despite being trained only on sparse target data, the model learns to predict the full spatial
image, expanding the spatio-temporal coverage of cirrus and mixed-phase IWP considerably.

Seviri Infrared Channels ConvNeXt UNet cirrus IWP

mixed-phase IWP

Figure 2: IceCloudNet architecture with sample inputs and predictions. At training, ground truth target data
are narrow DARDAR IWP swaths shown as orange lines which are the only supervision for the network. At
inference, dense images of the size of the SEVIRI inputs are predicted.

3.3 Experimental setup

We split the dataset into train, validation, and test splits in a 70%, 20%, 10% proportion. In order to
prevent spatio-temporal auto-correlation in the splits, data from the same day will be assigned to only
one split. We transform Ysparse logarithmically with base 10 and normalize X with the training set
statistics. We randomly apply rotations of 90° multiples for data augmentation and train IceCloudNet
for 100 epochs and batch size 32 using the Adam optimizer and learning rate of 107,

4 Results

We compare the predictive performance of IceCloudNet with two baseline models: linear regression
and gradient boosted regression trees (XGBoost) [4]]. Unlike CNNs, these models are not capitalizing
on the spatial structure of the input data, but are predicting the cloud properties pixel by pixel.

Table 1: IceCloudNet performance on independent test set. Note that MAE and correlation are computed only
on available DARDAR ground-truth and are calculated on log transformed target variable.

Cloud regime MAE | Pearson Correlation  Accuracy (%) T

Linear regression cirrus 0.83 0.75 n
g mixed-phase 0.66 0.75 84

cirrus 0.74 0.75 77

XGBoost mixed-phase  0.60 0.78 84
cirrus 0.49 0.82 86

IceCloudNet mixed-phase 047 0.83 88

Regression and classification metrics can only be calculated where DARDAR ground truth data is
available. The performance on the test set is reported in Table[I] The accuracy is calculated based on
a post-processed cloud mask where a pixel contains a cloud if the IWP > 10~ kg m™. IceCloudNet
outperforms the baseline models as it is able to learn from the spatial structure in the input data.
Figure [3]illustrates the predicted and target variables along the satellite overpass for a single patch



(a,b) as well as the ground truth IWC (c) from which the ice regime dependent IWP is derived. All ice
above the height of the -38°C isotherm (horizontal line in panel (c)) is in the cirrus regime, everything
below in the mixed-phase regime. Despite the complex multi-layer cloud scene, IceCloudNet is able
to separate the cirrus and mixed-phase regimes and successfully quantify the IWP for both regimes
for the majority of the scene. More samples are shown in Appendix [A]
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Figure 3: Sample predictions and ground truth along overpass for single patch shown in Figure 2. Panel (c)
visualizes vertically resolved IWC ground truth and the -38°C isotherm retrieved from ERAS5 [8]]. The x-axis is
an incremental counter for pixels along the overpass.

In Figure[d] we show the prediction of IWP (a-b) of a full SEVIRI observation. Additionally, the post-
processed cloud mask is shown in (c), which allows studying cirrus cloud origin [6]. Figure[T]displays
SEVIRI input and the available DARDAR ground truth for this observation. With IceCloudNet we
are able to expand the information of ice-regime dependent IWP from a narrow swath to the full
image. We note that adding geographical information via a topographic map did not improve the
prediction performance.
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Figure 4: Sample prediction of IceCloudNet for cirrus (a) and mixed phase (b) IWP and cloud mask (c). One
channel of the SEVIRI input for this prediction is shown inEl

5 Conclusions

We introduce a new way to obtain high-quality predictions for microphysical properties of cirrus
and mixed-phase clouds with high spatio-temporal coverage. Trained on geostationary SEVIRI data
and retrievals of actively measured DARDAR data, our machine learning based approach allows to
supply the community with a new observational constraint that will enable novel research on ice
cloud formation and improve understanding of the microphysical process by tracking and studying
cloud properties through time and space, even beyond the lifetime of recently-ended satellite missions
underlying DARDAR. We show that IceCloudNet can learn from sparse data and significantly
outperforms baseline models. New findings enabled by our work will help to improve climate models
reduce climate projection uncertainty and help assess the risk of geoengineering methods.
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A Prediction samples
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Figure A1l: Sample predictions of IceCloudNet (blue lines) and DARDAR ground truth (red lines) for cirrus
(left) and mixed-phase (center) IWP. Each row represents a random sample from the test set. The right plot in
each row shows the DARDAR IWC ground truth along the overpass, i.e the vertically resolved variable and
is displayed to provide insight into the structure of the cloud scene. The horizontal orange line represents the
ERAS derived -38°C isotherm which acts as a border between cirrus and mixed-phase regimes. The x-axis an
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incremental counter for pixels along the overpass which can vary depending on the overpass angle.

Figure [AT] shows IceCloudNet predictions for randomly sampled patches of the test set. From
qualitative inspection, we note that IceCloudNet is able to detect and quantify regime-dependent IWP
for larger cloud structures (e.g. a,c,f), even if the scene is very chaotic (e.g. d), but may struggle on



clouds with small horizontal extent (e.g. b,d). From a climate impact perspective, small clouds have
minor relevance compared to large cloud systems. Nonetheless, we aim to improve the performance
of IceCloudNet on smaller clouds in future versions.
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