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The ocean and climate change

- The ocean, covering over 70% of the globe, has absorbed more than 90% of
recent warming.

- Models predict changes in complex ocean systems.

- Example: shifts in location/strength of the Antarctic Circumpolar Current (ACC)

- However, the physical drivers behind these changes are not well understood.

0

<G T T
2 4 6 8 10 12 14 16 18 20
RMS of SHA [cm]

Image: NOAA/Atlantic Oceanographic & Meteorological Laboratory
Boning, C. W., Dispert, A, Visbeck, M., Rintoul, S. R., & Schwarzkopf, F. U. (2008). The response of the
Antarctic Circumpolar Current to recent climate change. Nature Geoscience, 1(12), 864-869.




Global climate modeling

- Coupled Model Intercomparison Project Phase 6 (CMIP6)

- Standardized experimental design and distribution protocol
- Massive amounts of data (23.4 PBs shared, still sparse)

- Hard to disseminate
- Understanding how the underlying physics of the ocean is changing is difficult
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9(9), 3461-3482.




Tracking global Heating with Ocean Regimes (THOR)
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1) Cluster ocean dynamical regimes

Full complexity ocean model
(MOMS at 1/4°)
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2) Supervised learning using labeled ocean dynamical regimes
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3) Tracking the effect of global Heating on Ocean Regimes (THOR)

with no access to in-depth ocean data
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Run the trained
classifier from Step 2

New ocean
model of
interest

Extract input data
needed for
classification

Interpret inferred
dynamical regimes




Step 1: Mesoscale unsupervised clustering
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1) Cluster ocean dynamical regimes| N atjve Emergent Manifold Interrogation (NEMI)
utilizes Uniform Manifold Approximation and Projection

" (UMAP) paired with agglomerative clustering
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- Partitions the ocean grid cells into clusters (dynamical
regimes) based on their physics
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Mclnnes, L., Healy, J., & Melville, J. (2018). Umap: Uniform manifold approximation
and projection for dimension reduction. arXiv preprint arXiv:1802.03426.
Sonnewald, M. (In review). A hierarchical ensemble manifold methodology for new
knowledge on spatial data: An application to ocean physics. JAMES.




Step 2: Learning regimes from readily available fields

2) Supervised learning using labeled ocean dynamical regimes
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- Inputs - Labels: 6 dynamical regimes
- face height (Z ' - -
Sea surface heig .t( 0S) + x/y grsd|ents identified by NEM]
- Depth (column height) + x/y gradients
- Depth summed monthly mass transport for uncertainty quantification
(umo_2d + vmo_2d)
- Coriolis parameter (f) 5> _—
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Step 3: Predicting regimes under climate change
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THOR reveals a shift in physics where the Antarctic Circumpolar Current (ACC)

meets the Pacific Antarctic Ridge (PAR).
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Key contributions

Historical and SSP585 Wind Stress Curl (166 ° W)
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Future directions and conclusion

Comparing CMIP models could give insight into how different representations
of ocean physics affect predictions
Predicting dynamical regimes with spatially aware neural networks, without

trading off with explainability
Questions? Contact wyik@hmec.edu
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