Uncertainty Quantified Machine Learning for Street
Level Flooding Predictions in Norfolk, Virginia

Steven Goldenberg Diana McSpadden Binata Roy
TINAF* TINAF* University of Virginia®
Newport News, VA 23606 Newport News, VA 23606 Charlottesville, VA 22904
sgolden@jlab.org dianam@jlab.org br3xk@virginia.edu
Malachi Schram Jonathan L. Goodall Heather Richter
TINAF* University of Virginia Old Dominion University?
Newport News, VA 23606 Charlottesville, VA 22904 Norfolk, VA 23529
schram@jlab.org goodall@virginia.edu hrichter@odu.edu
Abstract

Everyday citizens, emergency responders, and critical infrastructure can be dramat-
ically affected by the flooding of streets and roads. Climate change exacerbates
these floods through sea level rise and more frequent major storm events. Low-level
flooding, such as nuisance flooding, continues to increase in frequency, especially
in cities like Norfolk, Virginia, which can expect nearly 200 flooding events by
2050 [1]. Recently, machine learning (ML) models have been leveraged to produce
real-time predictions based on local weather and geographic conditions. However,
ML models are known to produce unusual results when presented with data that
varies from their training set. For decision-makers to determine the trustworthiness
of the model’s predictions, ML models need to quantify their prediction uncer-
tainty. This study applies Deep Quantile Regression to a previously published,
Long Short-Term Memory-based model for hourly water depth predictions [2], and
analyzes its out-of-distribution performance.

1 Introduction and Motivation

Coastal cities face combined forces of climate change: more frequent storms, increased precipitation,
amplified storm surge and tidal action, sea level rise, and fluctuations in groundwater levels. These
factors can lead to increased vulnerability and less resiliency to urban flooding [3]. Community
members and city officials would benefit from a surrogate model capable of real-time prediction and
fast simulation for what-if analysis, enabling them to understand potential disruptions in transportation,
emergency management, and city services. Additionally, corresponding uncertainty estimations are
essential for providing reliable decision support as they inform decision-makers when a data-driven
model may be inadequately trained for climate or geographic conditions of interest.

The Hampton Roads region of Virginia has a total population of 1.7 million. The city of Norfolk
is the second largest in the region, has the highest population density, and is home to over 245,000
people. Norfolk is a coastal city with 144 miles of waterfront, which enhances the quality of life and
drives an economy that relies heavily on the Naval Station Norfolk and the Port of Virginia [4]. While
access to water is an asset to the city, Norfolk is vulnerable to both pluvial and tidal flooding, which
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has increased in frequency and intensity due to climate change. As of 2018, the National Oceanic and
Atmospheric Administration (NOAA) Sewells Point tide station documented the greatest change in
relative sea level in the world of 1.45 feet in the last 100 years [3]. Additionally, since 1960, Norfolk
has seen a 325% increase in nuisance flooding, lower levels of flooding not caused by extreme events
or disasters [1]. With climate change, these trends are expected to continue, and the characteristics of
tidal action, precipitation, soil saturation, and groundwater levels will continue to shift, leading to
greater uncertainty in localized flooding predictions.

The importance of uncertainty quantification (UQ) for decision-relevant ML surrogate flooding
models has been highlighted in the context of fluvial flooding prediction [5], storm-tracking [6], and
flood risk [7]. ML flooding surrogate models have been developed for characterization of an entire
rainfall event: forecasting flood risk [8, 9, 10], predicting occurrence of floods [11], estimating total
accumulative water overflow [12], and predicting maximum water depth [13, 14, 15, 16]. However,
these solutions do not include UQ. This work builds upon [17], which compared a physics-based 1-
D/2-D high-resolution hydrodynamic model to a Random Forest (RF) surrogate model for street-scale
flooding prediction in Norfolk and demonstrated RF inferences were approximately 3,000 times faster.
Further research in [2] compared the performance of Recurrent Neural Network (RNN) surrogate
models to [17]’s RF model and demonstrated equivalent error metrics. This work also employs RNNs
as they support the inclusion of various UQ methods such as the Deep Quantile Regression (DQR)
model presented here.

2 ML Methods and Datasets

2.1 Norfolk Rainfall Dataset

Data for this work includes both geospatial and weather components, which are standardized to zero
mean and unit variance prior to model training. The geospatial data includes elevation (ELV), total
wetness index (TWI) [18], and depth to water (DTW) measurements [19] for 16,923 street segments
(or “nodes”) in the Norfolk region shown in Fig. 1. 17 separate rainfall events ranging from June
5th, 2016 to August 20, 2018 make up the weather component of the dataset and include hourly
rainfall, hourly tide level, 72 hour total rainfall, 2 hour total rainfall, and water depth estimations from
a physics based Two-dimensional Unsteady FLOW (TUFLOW) model [20]. More information about
the rainfall events can be found in Appendix A, Table 4, and the dataset is available for download on
Hydroshare [21].

This dataset is split by events into training and testing sets that match previous work [17, 2]. In
addition, we define three different node partitions; the first matches previous work on 6 flood-prone
street segments (6FP), the second contains all nodes where all three geospatial features are within



Table 1: Accuracy results for the 6FP dataset. The mean and standard deviation in meters are
computed from 16 random initializations of each model for the mean absolute error (MAE) and
root-mean-square error (RMSE).

Training Testing
Model MAE RMSE MAE RMSE

Base 0.0188 £0.0014  0.0463 £ 0.0024  0.0308 + 0.0008  0.0625 £ 0.0015
DQR  0.0186 £ 0.0016  0.0437 £0.0032  0.0317 £ 0.0010  0.0649 + 0.0024

the first and third quartiles (IQR), and the last contains all 16,923 nodes over the full study area
(FSA). The IQR dataset was chosen to facilitate analysis of our model’s accuracy and uncertainty
quantification performance on out-of-distribution (OOD) data. More information on these data splits
can be found in Appendix A, Table 5.

2.2 Base Long Short-Term Memory Model

Here we use the model architecture shown in Fig. 2, which was selected in [2] via a neural architecture
search conducted on the six flood-prone street segments. A more detailed model description can be
found in Appendix A, Table 3. As shown in Fig. 2, there are two input branches. A first input branch
extracts features from the spatial inputs ELV, TWI, and DTW. The second captures information from
the evolving tidal and pluvial events by employing a single Long Short-Term Memory (LSTM) layer
using a four-time-step look back. Outputs from the branches are concatenated, and dense layers
extract relevant features from the combined temporal and spatial information to produce a single
time-step, i.e., one-hour look-ahead inference.

2.3 Deep Quantile Regression

Unlike a standard deep learning model, Deep Quantile Regression (DQR)[22] estimates conditional
quantiles of the output. To do this, DQR uses the following alternative loss function:

L(ys,9:) = max(7(y; — ¥a), (T — 1)(yi — i),

where 7 is the desired quantile, and y; and y; are the label and prediction of the model respectively.
In this paper, we define our desired quantiles as 7 = [0.159, 0.5, 0.841], which provides a median
prediction as well as quantiles that match expected proportions for one standard deviation assuming a
N(0,1) Gaussian distribution. We average the difference from the outer quantiles to the median to
obtain a single standard deviation prediction. Computing uncertainty predictions using these quantiles
allows for comparisons to other UQ methods and use of the Uncertainty Toolbox for calibration [23].
In order to make the quantile predictions, we updated the output layer of the base model to return
three outputs with a linear activation function, instead of the single output with selu activation from
the original model in [2].

3 Results

In order to verify our model performance matches the base model without UQ, and the results
presented in [2], we trained 16 random initializations of the model with and without UQ. By training
multiple initializations, we can verify the stability of our model architecture and calculate the mean
and standard deviation for comparison metrics to determine whether there exist statistically significant
differences between results. Table 1 includes the mean absolute error (MAE) and root-mean-square
error (RMSE) for the training and testing event splits described in Appendix A, Table 4. While the two
models have statistically significant differences (z-statistic > 2.5) for all metrics except the training
MAE, it is clear that adding UQ through DQR only has a marginal effect on the average performance.
Specifically, the largest difference is only 2.4 mm for the testing RMSE. This is expected as both
model architectures are identical except for the output layer. Additionally, the DQR loss function for
the median prediction is equivalent to the MAE loss function used by the base model.

Next, we trained 16 random initializations of the DQR model on the IQR dataset using the same
12 training events. We report accuracy and UQ calibration results calculated using the Uncertainty



Table 2: Results for the IQR dataset. The mean and standard deviation are computed from 16 random
initializations of the DQR model for the mean absolute error (MAE), root-mean-square error (RMSE),
root-mean-square calibration error (RMSCE) and miscalibration area (MA).

Accuracy UQ Calibration
Dataset. MAE RMSE RMSCE MA

Training  0.0413 £ 0.0007  0.0633 £0.0012  0.0496 £ 0.0184  0.0454 £ 0.0172
Testing  0.0534 +0.0038  0.0828 £ 0.0089  0.0365 £ 0.0165 0.0314 £ 0.0158
FSA 0.3954 £ 0.2047 0.8744 £ 0.5291 0.1992 +£0.0280  0.1766 £ 0.0248
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Figure 3: Scatter plots comparing the maximum returned standard deviation (uncertainty) over all
timesteps for each street segment with the three geospatial features. The color of each point represents
the minimum Euclidean distance between each street segment’s geospatial features and the training
set. Dotted vertical lines denote the first and third quartiles used to select the training data.

Toolbox python package [23] in Table 2. Similar to the 6FP results, the model performs well for
in-distribution street segments on both the training and testing events with only minor signs of
over-fitting. Additionally, the model is well-calibrated according to the root-mean-square calibration
error (RMSCE) and miscalibration area (MA) metrics for the training and testing events.

Perhaps unsurprisingly, when we tested the DQR model on the FSA dataset over all events, we
saw a significant reduction in accuracy and uncertainty calibration. However, the UQ calibration
metrics degraded less than the accuracy and may still be useful. In fact, for the FSA dataset, the
correlation between absolute prediction error (i.e. |y — ¢|) and predicted standard deviations was
0.9545 £ 0.0442. Therefore, the standard deviations reported by the model are highly correlated with
the true error, even when those errors are significantly larger than training errors.

Additionally, we examined the maximum uncertainty reported by the model for each street segment.
To do this, we calculated the smallest distance between geospatial features for each street segment
and the training set. These distances, which represent how OOD a street segment is from the training
data, were used to color Fig. 3. We see increased standard deviations generally correlate with larger
distances from the training geospatial features (lighter colors). Moreover, standard deviations increase
more rapidly with TWI and ELV changes, which matches feature importance testing done in [17].

4 Conclusion

Given the expected sea level rise and the increasing storm vulnerability of Norfolk, Virginia, due
to climate change, predicting the timing and severity of localized nuisance flooding will become
increasingly relevant to the lives of residents. The DQR model presented in this paper allows for
fast and accurate predictions of these flooding conditions while providing increased uncertainty for
scenarios outside of the training distribution. These uncertainties are highly correlated with model
error (r = 0.95) and, therefore, provide a reliable indicator for the trustworthiness of the model
output. This is true even on novel OOD data, which suggests that the model may be transferable to
other flood-prone areas like New Orleans, Louisiana, especially if trained on the full Norfolk study
area.
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A Model and Dataset Information

Below, we present our model architecture where the base model matches [2]. The output shape and
number of parameters are obtained with the Keras function Model.summary(). The layers for the
temporal and spatial branches of the model are described separately with markers (*, 1) to indicate
their final output, which is passed to the mixture branch of the model. Values that have been changed
for the DQR model are given in bold.

Table 3: Model architecture. Total params: 12,853/12,887

Model Branch  Layer Output Shape Activation Param# Connected to
Input (None, 4, 6) — 0 —

Temporal LSTM (None, 4,20) tanh 2160 Input

p Dropout (None, 4,20) —- 0 LSTM

Flatten* (None, 80) — 0 Dropout
Input (None, 3) —_— 0 —

Spatial Densel (None, 4) selu 16 Input
Dense2f (None, 4) selu 20 Densel
Concatenate  (None, 84) _ 0 [*, 1]
Densel (None, 64) linear 5440 Concatenate

Mixture Dense2 (None, 64) selu 4160 Densel
Dense3 (None, 16) selu 1040 Dense2

Dense Out (None, 1/3) selu/linear 17/51 Dense3

Table 4 is modified from [2] with event dates in chronological order. The Aug. 20, 2018 event is
not used in this work due to its short duration which does not allow for adequate look-back for the
temporal LSTM input layer.
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Table 4: Rainfall Events Table 5: Data Split Information

Event Dates Duration (hrs)  Dataset Dataset Samples  Events
June 05-06, 2016 28 Train Train 6FP 1,842 13
July 30-31, 2016 34 Train Test 6FP 522 4
Aug. 09, 2016 16 Train Train IQR 648,691 13
Sep. 02-03, 2016 28 Train Test IQR 183,831 4
Sep. 19-21,2016 60 Train FSA 6,667,482 17
Oct. 08-09, 2016 37 Train

Jan. 01-02, 2017 23 Train

July 14-15, 2017 22 Train

Aug. 07-08,2017 34 Train

Aug. 28-29,2017 25 Train

Oct. 29-30,2017 29 Test

May 06, 2018 24 Test

May 28-29,2018 26 Test

June 21-23, 2018 37 Train

July 30, 2018 11 Train

Aug. 11,2018 24 Test
e 20 20H8—— 55— TFrain-
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