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Abstract

Global climate models (GCMs) are the main tools for understanding and predicting
climate change. However, due to limited numerical resolutions, these models suffer
from major structural uncertainties; e.g., they cannot resolve critical processes
such as small-scale eddies in atmospheric and oceanic turbulence. Thus, such
small-scale processes have to be represented as a function of the resolved scales
via closures (parametrization). The accuracy of these closures is particularly im-
portant for capturing climate extremes. Traditionally, such closures are based on
heuristics and simplifying assumptions about the unresolved physics. Recently,
supervised-learned closures, trained offline on high-fidelity data, have been shown
to outperform the classical physics-based closures. However, this approach requires
a significant amount of high-fidelity training data and can also lead to instabilities.
Reinforcement learning is emerging as a potent alternative for developing such
closures as it requires only low-order statistics and leads to stable closures. In
Scientific Multi-Agent Reinforcement Learning (SMARL) computational elements
serve a dual role of discretization points and learning agents. Here, we leverage
SMARL and fundamentals of turbulence physics to learn closures for canonical
prototypes of atmospheric and oceanic turbulence. The policy is trained using only
the enstrophy spectrum, which is nearly invariant and can be estimated from a few
high-fidelity samples. We show that these closures lead to stable low-resolution
simulations that, at a fraction of the cost, can reproduce the high-fidelity simu-
lations’ statistics, including the tails of the probability density functions (PDFs).
These results demonstrate the high potential of SMARL for closure modeling for
GCMs, especially in the regime of scarce data and indirect observations.
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Figure 1: Schematic of training an SGS closure using SMARL. The invariants of gradient and Hessian
of velocity (λ∇u and λ∇∇u) are the states, the actions are the localized (and dynamic) coefficient
cs(x, y, t) of classical Smagorinsky or cl(x, y, t) of Leith closures of the SGS term Π(x, y, t), and
the policy, π , learns matching the enstrophy spectrum ε̂ to that of the DNS.

1 Introduction

Predicting extreme weather and climate change effects demands simulations that account for complex
interactions across nonlinear processes occurring over a wide range of spatiotemporal scales. Turbu-
lence as manifested in atmospheric and oceanic flows, is a prominent example of such nonlinear and
multi-scale processes, and plays a critical role in transporting and mixing momentum and heat in the
climate system. While the governing equations of turbulent flows are known, GCMs, which are the
main tools for predicting climate variability, cannot resolve all the relevant scales. For example, in
the atmosphere alone, these scales span from 10−4 (and smaller) to 104 km [1, 2]. Despite advances
in our computing capabilities for climate modeling, this limitation is expected to persist for decades.

The effect of unresolved small scales, often referred to as sub-grid scales (SGSs), cannot be ignored
in a nonlinear system, and their two-way interactions with the resolved scales have to be accurately
accounted for in order for the GCMs to produce stable simulations and the right statistics (climate) and
extreme events. Current GCMs use semi-empirical and physics-based representations of SGSs using
closures [3]. The input to a closure function is the resolved scales and the output is the SGSs fluxes
of momentum, heat, etc. The current closures for many Earth system processes, particularly turbulent
flows, fall short of accurately representing the two-way interactions, due to oversimplifications and
incomplete theoretical understanding [4, 5]. For example, a major shortcoming is that the current
closures are too diffusive (dissipative) and also do not represent a real and important phenomenon
called backscattering (basically, anti-diffusion) [6], preventing the GCMs from capturing the extreme
events [7, 8]. Recently, there has been growing interest in using machine learning (ML), particularly
deep neural networks (DNNs), to learn closures from data. There are two general approaches to
ML-based data-driven closure modeling:

Supervised (offline) learning of closures: In this approach, many snapshots of high-fidelity data
(e.g., from direct numerical simulation (DNS)) are collected as the “truth”, then filtered and coarse-
grained to extract the SGS terms [9]. In turn, these data are used to train a DNN to match the SGS
terms Π from the closures and from the truth (e.g., using a mean-square-error loss [4]). Once trained,
the DNN is coupled to the low-resolution solver to perform large eddy simulation (LES). Studies
using a variety of architectures and test cases, from canonical turbulent systems to atmospheric and
oceanic flows, have shown the possibility of outperforming classical physics-based closures such
as Smagorinsky and Leith [e.g., 4, 8, 10–14]. However, for many critical climate processes, such
high-quality datasets are scarce, extracting the SGS terms is not straightforward, and offline-learned
closures can lead to unstable runs [15, 16]. While adding physics to the DNN, transfer learning,
and other techniques can address these issues to some degree [14, 17–20], overall, offline learning
remains a promising but challenging approach to data-driven SGS modeling for climate applications.

Online learning of closures: Online learning is emerging as a potent alternative to supervised
learning with the closures learned while they operate on the LES. The goal is not to match detailed
flow quantities (such as the velocity field or the SGS terms) but instead match the low-order statistics
of the high-fidelity simulations or observations. In the context of climate modeling, depending on the
application, these statistics could be key properties of climate variability [20] or spectra of turbulent
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flows [21, 3]. Online learning requires running the numerical model (e.g., a GCM) during the DNN
training, which can be challenging. In general, 3 approaches to online learning exists: 1) using a
differentiable LES solver/GCM [22–24], 2) using Ensemble Kalman Inversion (EKI) [25–27, 20],
and 3) using reinforcement learning [28–31]. While 1-2 have shown promising results, they face
major challenges. For example, current GCMs are not differentiable and this approach requires major
development in the climate modeling infrastructure [16].

Multi-agent reinforcement learning (MARL), however, has accomplished previously unattainable
solutions in ML tasks [e.g., 32–34], as well as success in improving the parametric and structural
uncertainties of closures for 3D homogeneous and wall-bounded turbulent flows [28, 29, 31, 30].
However, its potential in climate-relevant applications, particularly in capturing extreme events, has
remained unexplored. Here,

• We train a SMARL-based SGS closure using low-order statistics in climate-relevant flows, i.e., 2D
quasi-geostrophic turbulence with different forcing or β effects, producing multi-scale jets and
vortices like those observed in the Earth’s atmosphere and ocean,
• We remark that we use as input states to the SMARL invariants of the flow and learn the flow-

dependent coefficient c of two classic physics-based closures (Leith and Smagorinsky) by matching
the enstrophy spectrum the LES solver with that of the DNS (obtained from only 10 true snapshots).

• To test the performance of the data-driven closure, we compare the kinetic energy spectrum
and vorticity PDF of the DNS with 160 to 10240× spatio-temporally coarser LES-MARL. We
particularly focus on comparing the tails of these PDFs, as they represent extreme (weather) events
in these prototypes. As baselines, we use localized dynamics Smagorinsky and Leith closures,
which approximate c as a function of the flow based on physical arguments.

2 Scientific Multi-Agent Reinforcement Learning (SMARL)

In deep-SMARL, a DNN is trained to learn a policy that maps the states to actions. States are fed
into a DNN and actions of the agents maximize a reward, see the schematic in Figure 1. Below, we
describe the main elements of the training, for which we have utilized Korali, a general-purpose, high-
performance framework for deep-SMARL [35]. State: The state vector consists of a combination of
local and global variables. As local states, instantaneous invariants λ of filtered velocity gradients [36]
and velocity Hessians [28] (5 non-zero local variables) are used. This choice embeds Galilean
invariance into the closure. As global states, enstrophy spectrum ε̂ is used. We have found the
use of these physically motivated invariants, rather than (ū, v̄) or ψ̄ or their derivatives, to be key
in learning successful closures. Action: The SGS values at each grid point are required to evolve
the governing equations of the environment in time. To retain some degree of interpretability and
reduce the computational complexity of training, two classical physics-based closures are employed
as the main structure of the SGS closure: (i) Smagorinsky [37], which uses νe = cs∆

2|S̄|, and (ii)
Leith [38], which uses νe = cl∆

3|∇ω̄|, where νe(x, y, t) is the eddy viscosity, ∆ is the filter size,
cs(x, y, t) and cl(x, y, t) are the key coefficients, and |S̄|, and |∇ω̄| are the magnitudes of the filtered
strain rate and ω̄ gradient tensors. The coefficients c, which cannot be obtained from first principles,
are considered as actions (learned as a function of the state). The actions are interpolated between
the agents on to the LES grid via a bilinear scheme, and used to calculate the SGS stress tensor,
τSGS = −2νeS̄, which is then used to compute Π that is needed in the low-resolution LES solver,
Eq. (1). Reward: The goal of our SGS closure is to match a target enstrophy spectrum, which can
be calculated from a short-time high-fidelity simulation or few observations. We have computed
the spectrum using 10 snapshots from a short DNS run, which is known to be insufficient to learn
a successful closer offline in these flows [17]. The reward rt at each time step is defined as the
cumulative sum rt = Σt

s=0r
′
s of the inverse of the L2 errors of the logarithms of the spectra, i.e.,

r′s = 1/‖ log(ε̂DNS)− log(ε̂s,RL)‖22, where ε̂DNS is the time-averaged enstrophy spectrum and ε̂s,RL
is the instantaneous enstrophy spectrum at step s. Note that both local variables of the state and the
actions are defined at the location of the agents, and agents are uniformly distribution in the domain.
Environment: The vorticity–streamfunction formulation of the 2D Navier-Stokes equation (NSE) is
solved using a pseudo-spectral method. In all cases, Re = 20000 and the DNS resolution is 1024
collocation points in each direction. The solver is coupled with Korali as the environment. Briefly,
the environment provides the dynamics of LES given the actions and the states,

∂ω

∂t
= F (ω, ψ) + Π, (1)
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where Π(ψ, ω) = ∇× (∇ · τSGS), F (.) represents the linear and nonlinear terms of the NSE (see
Eq. (2)), and ψ and ω are the resolved streamfunction and vorticity on the coarse grid.

3 Experiments

We have developed closures for 3 different forced 2D turbulent flows on the β-plane (details in
Table 1). These cases are commonly used to evaluate the SGS closures of geophysical turbulence [e.g.,
39, 17, 13] and exhibit distinct behaviors and dynamics, as seen in snapshots of vorticity fields, ω, in
Figure 2. Training is performed with the objective of achieving an LES enstrophy spectrum close to
the target (true, DNS) spectrum. We have used the kinetic energy spectra as one unseen test metric.
More importantly, the PDFs of the resolved vorticity are compared. The tails of these PDFs represent
rare, extreme events, i.e., significantly large ω with a small probability of occurrence. Note that
these vortices resemble the weather system’s high- and low-pressure anomalies, which can cause
various extreme weather events [40]. LES with 16 to 1024× coarser spatial resolution and 10× larger
time steps coupled to the learned closures are then ran, and their statistics are compared with those
of the DNS and LES with classical dynamic Smagorinsky and Leith closures. As summarized in
Figure 2, the tails of the vorticity PDFs clearly show the advantage of the SMARL-based closures,
suggesting that these closures have the right amount of diffusion and backscattering (anti-diffusion).
The classical closures are too diffusive (a known problem), leading to much less frequent extreme
events. The energy spectra also show the better ability of LES with SMARL-based closures in
capturing the energy across the scales.

4 Conclusion and future work

Figure 2: Comparison of LES statistics with SMARL-based closures and the
classical closures. Rows 1-3 correspond to the cases in Table 1.

We have trained
a DNN-based
SMARL to de-
velop closures for
climate-relevant
turbulent flows.
We show that
these closures
enable LES with
much fewer de-
grees of freedom
than DNS to
produce statistics,
including energy
spectra, PDF, and
most importantly,
tails of the PDFs,
that closely
match those of
the DNS. Partic-
ularly, in terms
of capturing
extreme events,
LES with MARL-
based closures
significantly
outperform LES
with classical
physics-based
closures. The
classical closures
and even many offline-learned DNNs produce unstable LES unless they are made overly diffusive
(e.g., by eliminating backscattering), which comes at the cost of under-representing extreme
events [10, 8]. With a small number of samples from DNS, which were not enough to even train an

4



DNN offline [17], SMARL develops closures capable of capturing the statistics of such extreme
events, suggesting that both diffusion and backscattering, i.e., the two-way interaction of the
resolved scales and SGS, are accurately represented (analysis is in progress to quantify the interscale
energy/enstrophy transfers).

Immediate next steps include further analysis and interpretability of the c distributions learned
using SMARL and examining the out-of-distribution generalizability of these closures. While
offline-learned closures are not expected to extrapolate (e.g., to a different climate) unless methods
like transfer learning are used [41], the online-learned closures can be made generalizable by
proper scaling of the invariants and spectra [42], which might be possible with enough theoretical
understanding of the changing system, e.g., the warming climate [43]. Future work will focus on
applying this framework to intermediate-complexity and comprehensive climate models to learn SGS
closures (specially for offline-online learning [20]) and systematically calibrate GCMs [44].
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A 2D turbulence

We consider the dimensionless governing equations in the vorticity (ω) and streamfunction (ψ) formulation in a
doubly periodic square domain with length L = 2π, i.e.,

∂ω

∂t
+N (ω, ψ) =

1

Re
∇2ω − f − rω + β

∂ψ

∂x
, (2a)

∇2ψ = −ω, (2b)

where N (ω, ψ) = (∂ψ/∂y) (∂ω/∂x) − (∂ψ/∂x) (∂ω/∂y) , is the nonlinear advection term, and f(x, y) =
κf [cos (κfx) + cos (κfy)] is a deterministic forcing [e.g., 45, 46].

To derive the equations for large eddy simulation (LES), we apply sharp spectral filtering [47, 48], denoted by
(·), to Eq. (2) to obtain

∂ω

∂t
+N (ω, ψ) =

1

Re
∇2ω − f − rω + β

∂ψ

∂x
+N (ω, ψ)−N (ω, ψ)︸ ︷︷ ︸

Π=∇×(∇·τSGS)

, (3a)

∇2ψ = −ω. (3b)
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The LES is solved on a coarse resolution with the sub-grid scale (SGS) term, Π, being the unclosed term,
requiring a model connecting it to the resolved flow variables, i.e., closure.

For eddy viscosity models:

τ SGS = −2νeS̄, (4)

where Sij = 1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
and S̄ =

√
2SijSij .

B Test Cases

The studied cases are summarized in Table 1.

Table 1: The test cases and hyper-parameters in training. σ is standard deviation.
Case Re β κf r σ(ω) ∆tRL/∆tDNS Training horizon Updates policy every

1 20× 103 0 4 0.1 5.51 10 1× 104∆tRL 10∆tRL
2 20× 103 20 4 0.1 10.75 10 2× 104∆tRL 20∆tRL
3 20× 103 0 25 0.1 13.01 10 1× 104∆tRL 10∆tRL
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