
Towards Recommendations for Value Sensitive
Sustainable Consumption

Thomas Asikis
University of Zurich, Behavioral Game Theory

Andreasstrasse 15, 8050 Zürich
thomas.asikis@uzh.ch

Abstract

Excessive consumption can strain natural resources, harm the environment, and
widen societal gaps. While adopting a more sustainable lifestyle means making
significant changes and potentially compromising personal desires, balancing
sustainability with personal values poses a complex challenge. This article delves
into designing recommender systems using neural networks and genetic algorithms,
aiming to assist consumers in shopping sustainably without disregarding their
individual preferences. We approach the search for good recommendations as a
problem involving multiple objectives, representing diverse sustainability goals
and personal values. While using a synthetic historical dataset based on real-
world sources, our evaluations reveal substantial environmental benefits without
demanding drastic personal sacrifices, even if consumers accept only a fraction of
the recommendations.

1 Introduction

Sustainable Development Goals [52] (SDGs) outlined by the United Nations (UN) encompass various
sustainability criteria crucial for the long-term well-being of societies and the environment [29].
Environmental and societal sustainability goals entail multiple constraints and objectives affecting
everyday decision-making [37, 10]. However, reconciling these objectives might involve intricate
trade-offs; for instance, minimizing CO2 emissions in one activity might inadvertently increase its
water footprint. Adopting a value sensitive design [53] necessitates considering personal values,
including preferences, tastes, and budget constraints.

Researchers anticipate Artificial Intelligence (AI) to play a pivotal role in tackling the complex
challenges posed by the SDGs [56]. However, AI applications pose new challenges in aligning with
value sensitive design, notably concerning unequal resource distribution, loss of individual autonomy
and privacy, and increased emissions from computations [56, 23]. Value sensitive design in AI
systems aims to tackle these challenges by integrating personal and societal values as objectives or
constraints [53].

Prior approaches in value sensitive recommender systems have concentrated on individual mobile
platform and website applications [4]. Such approaches may benefit from more comprehensive quan-
titative assessments of their collective impact. Such systems have the potential to guide individuals
toward more sustainable consumption consciously [24]. While existing recommender systems often
focus on specific aspects like diets or single product recommendations [1, 51, 50], our work builds on
modern multi-objective design principles to address emerging complex trade-offs using optimization
techniques [67, 65, 43, 44, 22, 38, 1]

The main contributions of the current article are to (i) propose and formalize a real-world multi-
objective optimization problem for recommendations of personalized sustainable baskets, (ii) create

Tackling Climate Change with Machine Learning: workshop at NeurIPS 2023.

and analyze a novel synthetic dataset based on sustainability factors and consumer real-world data,
(iii) propose effective recommender baselines and quantify their impact on environmental criteria, and
(iv) introduce a novel deep learning framework for mixed integer programming and multi-objective
optimization problems.

2 Preliminaries

Related Work: Classic approaches in recommender systems fall into two primary categories, often
combined [48]: (i) Collaborative filtering, which centers on user-item interactions and recommends
items based on user similarities. (ii) Content-based (and context-aware) filtering applications mainly
consider item attributes and item-item similarities. Applications in both categories often overlook
the environmental aspects of products, focusing solely on past user shopping behavior without
sustainability considerations.

Extending these approaches involves incorporating environmental and personal product selection
criteria and using advanced methods to find similar products or users [18, 41, 26]. However, this
becomes feasible only when the computation allows for a manageable enumeration of choices
and similarity criteria, especially at the individual product level. On the basket level, sequence
recommendations can lead to a combinatorial explosion, making it unfeasible to iterate all possible
baskets across various criteria within a reasonable time [47]. Expanding the search and feature
spaces, typically when considering shopping baskets that satisfy multiple personal and environmental
criteria, poses challenges requiring improved metrics [40] and more advanced sampling techniques
for training [59, 60].

Recommending sustainable baskets also requires considering resolving several trade-offs [46] be-
tween multiple criteria such as climate, health, and responsible consumption. Therefore, we consider
a recommendation approach that actively searches for Pareto optimal baskets across consumer criteria
by constructing them via optimization [18]. Multi-objective optimization, applied in the food industry,
production, and supply chains, emerges as a relevant strategy for us [43, 2, 39, 57]. Selecting the
optimal number of products for a consumer basket under budget and value sensitive constraints
resembles a multi-objective and multi-dimensional knapsack problem [36]. Solving such problems
via constraint optimization and linear/dynamic programming may prove challenging, requiring more
efficient polynomial time approximations [32]. Linear programming relaxation methods may struggle
with complex problems [5, 58]. Regularization methods resembling scalarization techniques [65]
offer an alternative for solving these problems but require extensive fitting and intricate interpretation
of Lagrange coefficients for each objective [64]. Classic evolutionary algorithms (EAs) [65], which
can also be combined with scalarization methods, are frequently considered in the relevant litera-
ture [22, 14]. Our focus in this article lies on EAs, which seem adept at efficiently handling complex
multi-objective optimization problems with multiple (more than 5) objectives and intricate trade-offs.

Dataset: Transaction data, product prices, and purchased quantities were retrieved by “The Complete
Journey Dataset” by the Dunnhumby grocery store [17]. The proposed models are evaluated in weekly
basket purchases that happen over 85 weeks for the top 500 GHG emission-producing households
with 28400 historical (intended) baskets. Environmental impact indicators for product types are taken
from related work. [45]. Nutrition information from Food Agricultural Organization Food Balance
Sheets [30] is downloaded from FAO website [19]. Historically purchased weekly baskets from
the transaction data are compared against recommended ones. Weekly baskets contain the sum of
all the purchases for a given household within a week. We perform systematic preprocessing steps
(see Appendix A) to align product quantities and units between datasets and remove non-matching
products and small baskets. The data sources are publicly available, but Dunnhumby still needs to
approve the release of the synthetic dataset. Reproduction steps with code will be open-sourced.

Problem Setting: Value sensitive sustainable recommendations are formalized as a multi-objective
optimization problem of selecting combinations of discrete (non-negative integer) quantities over
N = 132 distinct products. The weekly intended/historical basket is a vector of non-negative integer
product quantities x∗k,q ∈ NN≥0 for a specific household k at week q. Each element of the vector
corresponds to a distinct product, e.g., the i-th element represents the number of units of product
i to be purchased. Week q and household k indices are omitted from the basket vector for brevity.
The intended basket x∗ is considered the initial solution to the current problem. We also consider

2

intended baskets to represent consumer product preferences and nutritional goals. We define an
ordered set C of |C| = 11 of possible recommendation factors, with the factor index denoted as j.
Then, we calculate a factor coefficient ci,j per product i unit, denoting the total amount of nutritional,
monetary, or environmental quantities per product unit. The current dataset contains no negative
values for coefficients ci,j , e.g., no products are considered carbon sinks. Therefore, for a basket
vector xxx, one can calculate the total quantity for a specific feature as vj(x) =

∑N
i=1 ci,jxi.

Objective Formulation: Regarding objectives, consumer taste is expressed via the cosine similarity
between intended and recommended baskets and the total intended basket price. We assume high
similarity denotes a higher likelihood of a purchase under a counterfactual hypothesis, in which the
consumer would consider recommended baskets before purchase. Regarding price, health, and envi-
ronmental objectives, we consider basket ratio ρj(xxx,xxx′) = vj(xxx)/vj(xxx

′) between recommendation
and intended baskets xxx,xxx′. Objectives, features, and other relevant concepts are found in Table 2 and
described further in Appendix B. For example, an optimization trade-off appears between objectives
J1 and J2, as the intended basket optimizes similarity objective J1, but not minimal cost objective J2.

Scope j Feature Unit Target Min. Objective

Taste 1 Cosine similarity - Max. J1 = 1− x>x∗/‖x‖ ‖x∗‖
2 Cost Dollars ($) Min. J2 = ρ2(x,x

∗).

Health
3 Energy kCal Pres.

Jj∈{3,4,5} = (1− ρj(xxx,xxx∗))24 Protein grams (g) Pres.

5 Fat grams (g) Pres.

Environment

6 GHG emissions CO2 kg eq. Min.

Jj>5 (x,x∗) = ρj(xxx,xxx
∗)

7 Acidification SO2 kg eq. Min.

8 Eutrophication PO4
3- kg eq. Min.

9 Land use m2 Min.

10 Water usage L Min.

11 Stressed water usage L Min.

TABLE 2: Concepts relevant to objectives for basket selection. The “Target” column describes whether the
optimization goal is to minimize, maximize, or preserve the intended basket value. The “Min. Objective”
column shows the corresponding minimization objective used in the models.

The multi-objective minimization problem for the M aforementioned objectives Jj = Jj(xxx,xxx
∗) can

be summarized as minxxx (J1, J2, ...JM) ,xxx ∈ X̂ for a set of feasible baskets X̂. An optimization
algorithm f(X0;www) = X with parameter vector www takes an initial set of baskets X0 and calculates
a recommended set of baskets X. The goal of such an algorithm is to find a non-dominated set
of baskets. A basket xxx dominates xxx ≺ xxx′ another basket xxx′ if Jj(xxx) ≤ Jj(xxx

′) for all j ∈ C and
Jj(xxx) < Jj(xxx

′) holds at least for one j [15]. If no other basket dominates xxx, xxx is referred to as
non-dominated.

3 Models

Multi-objective recommender systems are standard in literature [65, 42] and have been applied
in sustainability-related problems from producer perspective [43] and recommendation of local
businesses [44]. Evolutionary algorithms are widely used for multi-objective optimization [16]
with M ≥ 2 objectives. Although the current problem resembles a multi-task recommendation
problem [65] that is often treated with scalarization methods [65], the high dimensionality of the
problem settings indicates that EAs are more appropriate to consider for its solution. Furthermore,
scalarization methods can be combined with evolutionary algorithms [22] to guide the evolution
towards optimization of specific objectives. Figure 1 provides a brief overview of the benchmark
evolutionary algorithms. We also employ a neural network approach, namely Gradient Guided
Genetic Algorithms (G3A), which simultaneously allows for backpropagation and training over
multiple baskets. We describe more technical details in Appendix C. While GAs optimize single-

3

problem instances, G3As can be trained to generalize on unknown instances. We plan to use such
properties of G3As further in future work.

Target
Assortment

0 3 5 2
 1 4 5 0

i. Initial Population:
Random sample

Initial
Population

2 3 5 0

1 4 5 0

 1 4 5 0

 2 3 5 0

2 4 5 0

1 3 5 0 Offspring
Population

ii. Probabilistic
Crossover

 5 8 9 3

 2 4 5 0

Generation

5 8 9 3

1 2 7 1Mutated
Population

iii. Probabilistic
Mutation

iv. Population
Selection

(a) GA

Target
Assortment

i. Initialization: Neural Mutation with NODEC
& Population Discretization

Initial
Population

ii. Neural Crossover
with Transformers

Offspring
Population

v.Non-Dominated
Search

iii. Neural Mutation
with NODEC

Mutated
Population

 1 4 5 0

Non-Dominated
Population

iv. Population
Discretization

vii. Population
Selection

vi. Backpropagation

Training Epoch/Generation

0 3 5 2

0 2 4 1

0 1 3 2

 1 4 5 0

1 3 2 1

3 1 1 1

(b) G3A

FIGURE 1: With classic probabilistic GAs (a), a population of basket vectors is improved iteratively through
“generations”. The key components are population sampling (a.i), crossover (a.ii), mutation (a.iii), and
population selection of non-dominated solutions (a.iv). In G3A we employ transformers [54] for the crossover
(b.ii) and neural ordinary differential equation controllers [3] for the initial population sample (b.i) and mutation
operators (b.iii). Next, continuous quantities are discretized via straight-though estimators [6] to resemble
discrete product quantities (component b.iv).

4 Results

Two multi-objective optimization algorithms are compared with G3A, namely MO-NES and reference
point NSGA-II [14] (RNSGA-II). Several hyper-parameter configurations were tested per method,
often taking several days to finish. G3A is parameterized to generate B = 8 recommended baskets
for a single instance, whereas RNSGA-II and MO-NES generate B = 10 recommendations for a
single intended basket.

Model Runtime Emissions Mean / Min Improv. Mean Optimality (CI)

seconds kg CO2 eq. kg CO2 eq. %

G3A (GPU) 1.89± 1.22 (2.07± 1.44)10−8 31.49 / 0.46 98.0 (97.9, 98.1)

MO-NES (CPU) 0.20± 0.01 (2.16± 0.14)10−9 21.03 / 0.41 94.8 (94.6, 94.9)

RNSGA-II (CPU) 0.46± 0.06 (6.95± 2.41)10−10 34.04 / 0.45 98.6 (98.5, 98.6)

TABLE 4: Execution time and GHG emissions (mean ± standard deviation) measured with python library
codecarbon [49] over a sample of 100 intended baskets from different households. The mean optimality rate
is reported across all intended baskets.

Algorithmic Comparison: First, the ability of baselines to produce find non-dominated solutions
for the problem is evaluated in a short amount of time. Each model is tested individually per intended
basket to evaluate performance for a single recommendation instance. We measure total runtime, av-
erage GHG emissions per execution, average GHG emission improvement in case of recommendation
acceptance, and mean/min optimality ratio, i.e., the percentage of suggested solutions that are non-
dominated by other method’s solutions for the same recommendation. Our findings are summarized
in Table 4, and we observe that all methods are highly efficient in retrieving non-dominant solutions.
G3A is not batched, and thus, GPU speedups are not considered. For all methods, accepting a single
recommendation outweighs vastly the emissions produced by runtime.

4

FIGURE 2: Evaluation of recommendations.

(a) The mean ratio of quantities between recommended and
intended basket.

0.6 0.7 0.8 0.9Sim
ila

rit
y

Ene
rg

y

Pro
tei

n
Fa

t

0 20 40 60

G3A

RNSGA-II

MO-NESStr.
Freshwater

Acidification

Eutrophication

Freshwater

Cost

Land
Use

GHG
Emissions

Mean %

(b) What do I sacrifice?

Personal Impact: G3A (Intended)

Cost 35.2 (38.7)

Fat (g) 698 (726)

Protein (g) 911 (971)

Energy (kCal) 25400 (27100)

Added (%) 21

Removed (%) 54

(c) How much do we save?

G3A Environmental Impact

Land Use (km2) 1.02

GHG Emissions (kt) 0.35

Acidification (t) 1.16

Eutrophication (t) 1.24

Freshwater (107L) 22.8

Str. Freshwater (109L) 1.06

Impact analysis: We now seek recommendations that would be likely accepted by the user by filtering
out recommendations that perform poorly across most objectives or produce highly dissimilar baskets,
i.e., when cosine_sim(xxx,xxx∗) ≤ 0.5. The whole period of shopping is re-sampled 5000 times with
25% of the baskets replaced with recommendations to estimate mean impact.

Figure 2a indicates that RNSGA-II outper-
forms other baselines in terms of cost, while
G3A shows higher performance in terms
of nutritional values, where values closer
to 1.0 are more desired. MO-NES shows
higher performance in terms of cosine sim-
ilarity, where higher is better in the reported
plots. RNSGA-II and G3A compete tightly
for environmental impact, with RNSGA-II
clearly outperforming in terms of water foot-
prints and G3A clearly outperforming in
terms of land usage. All three baselines
offer different profiles of non-dominated so-
lutions across objectives, namely that they
find different types of good recommenda-
tions across objective combinations. Using
RNSGA-II has the most significant effect on
the selected basket, involving removing the
highest number of products. Next up, G3A
typically eliminates around 51% of prod-
ucts while introducing 21% new ones, on
average. Finally, MO-NES is the least intru-
sive baseline, respecting consumer basket
choices the most. Figure 2b showcases the comparison between mean basket values for period
samples with G3A and without any recommender.

The total impact for accepting 25% of the G3A recommendations (see Appendix Figure 4 for the rest)
is showcased in Figure 2c, where the mean values of total reduction on all environmental quantities
across samples are reported. In conclusion, an accepted fraction of proposed recommendations can
yield a substantial effect on environmental impact while also respecting personal preferences.

5 Conclusion

The article introduces a framework for multi-objective recommender systems, focusing on personal-
ized sustainable shopping recommendations. It evaluates real-world data to design shopping baskets
that balance sustainability and user preferences. By comparing novel approaches with existing
methods, this study demonstrates how even partial adoption of sustainable recommendations can
significantly benefit the environment. This framework opens avenues for advancing multi-objective
optimization for personalized sustainable consumption in various recommendation system settings.

5

Acknowledgements

This work/paper has been partially supported by the ’Co-Evolving City Life - CoCi’ project through
the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No. 833168). The author would like also like to acknowl-
edge partial support by NCCR Automation, a National Centre of Competence in Research, funded
by the Swiss National Science Foundation (grant number 180545). Finally, the author would also
like to thank Dr. Nino Antulov-Fantulin, Dr. Lucas Boettcher, Prof. Dirk Helbing, Prof. Pet-
ros Koumoutsakos and Prof. Avishek Anand and the reviewers for their useful feedback on the
manuscript.

References
[1] Ricardo Abejón et al. “Multi-Objective Optimization of Nutritional, Environmental and Eco-

nomic Aspects of Diets Applied to the Spanish Context”. In: Foods 9.11 (2020), p. 1677.
[2] Masoud Alinezhad et al. “A fuzzy multi-objective optimization model for sustainable closed-

loop supply chain network design in food industries”. In: Environment, Development and
Sustainability (2022), pp. 1–28.

[3] Thomas Asikis, Lucas Böttcher, and Nino Antulov-Fantulin. “Neural ordinary differential
equation control of dynamics on graphs”. In: Physical Review Research 4.1 (2022), p. 013221.

[4] Thomas Asikis et al. “How value-sensitive design can empower sustainable consumption”. In:
Royal Society open science 8.1 (2021), p. 201418.

[5] Abbas Bazzi. Strengths and Limitations of Linear Programming Relaxations. Tech. rep. EPFL,
2017.

[6] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. “Estimating or propagating gradients
through stochastic neurons for conditional computation”. In: arXiv preprint arXiv:1308.3432
(2013).

[7] J. Blank and K. Deb. “pymoo: Multi-Objective Optimization in Python”. In: IEEE Access 8
(2020), pp. 89497–89509.

[8] Lucas Böttcher, Nino Antulov-Fantulin, and Thomas Asikis. “AI Pontryagin or how artificial
neural networks learn to control dynamical systems”. In: Nature Communications 13.1 (2022),
pp. 1–9.

[9] Lucas Böttcher, Thomas Asikis, and Ioannis Fragkos. “Control of Dual-Sourcing Inventory
Systems Using Recurrent Neural Networks”. In: INFORMS Journal on Computing (2023).

[10] Abhishek Chaudhary, David Gustafson, and Alexander Mathys. “Multi-indicator sustainability
assessment of global food systems”. In: Nature communications 9.1 (2018), p. 848.

[11] Ricky T. Q. Chen et al. “Neural Ordinary Differential Equations”. In: Advances in Neural
Information Processing Systems (2018).

[12] Ricky TQ Chen, Brandon Amos, and Maximilian Nickel. “Learning Neural Event Functions for
Ordinary Differential Equations”. In: International Conference on Learning Representations.
2020.

[13] Kalyanmoy Deb and Himanshu Jain. “An Evolutionary Many-Objective Optimization Algo-
rithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems
With Box Constraints”. In: IEEE Transactions on Evolutionary Computation 18.4 (2014),
pp. 577–601. DOI: 10.1109/TEVC.2013.2281535.

[14] Kalyanmoy Deb and J Sundar. “Reference point based multi-objective optimization using
evolutionary algorithms”. In: Proceedings of the 8th annual conference on Genetic and
evolutionary computation. 2006, pp. 635–642.

[15] Kalyanmoy Deb et al. “A fast and elitist multiobjective genetic algorithm: NSGA-II”. In: IEEE
transactions on evolutionary computation 6.2 (2002), pp. 182–197.

[16] Kalyanmoy Deb et al. “A fast elitist non-dominated sorting genetic algorithm for multi-
objective optimization: NSGA-II”. In: International conference on parallel problem solving
from nature. Springer. 2000, pp. 849–858.

[17] Dunnhumby - The complete journey dataset. Available at https://www.dunnhumby.com/
source-files/ (last accessed: September 2021). 2021.

6

https://doi.org/10.1109/TEVC.2013.2281535
https://www.dunnhumby.com/source-files/
https://www.dunnhumby.com/source-files/

[18] David Elsweiler, Hanna Hauptmann, and Christoph Trattner. “Food Recommender Food
recommenderSystems”. In: Recommender Systems Handbook. Ed. by Francesco Ricci, Lior
Rokach, and Bracha Shapira. New York, NY: Springer US, 2022, pp. 871–925. ISBN: 978-
1-0716-2197-4. DOI: 10.1007/978-1-0716-2197-4_23. URL: https://doi.org/10.
1007/978-1-0716-2197-4_23.

[19] FAO – Food Agriculture Organization, Food Balance Sheets. Available at http://www.fao.
org/3/X9892E/X9892e05.htm (last accessed: September 2021). 20211.

[20] Carlos M Fonseca, Luís Paquete, and Manuel López-Ibánez. “An improved dimension-sweep
algorithm for the hypervolume indicator”. In: 2006 IEEE international conference on evolu-
tionary computation. IEEE. 2006, pp. 1157–1163.

[21] Guillermo Fuertes et al. “Chaotic genetic algorithm and the effects of entropy in performance
optimization”. In: Chaos: An Interdisciplinary Journal of Nonlinear Science 29.1 (2019),
p. 013132.

[22] Tobias Glasmachers, Tom Schaul, and Jürgen Schmidhuber. “A natural evolution strategy for
multi-objective optimization”. In: International Conference on Parallel Problem Solving from
Nature. Springer. 2010, pp. 627–636.

[23] Dirk Helbing and Evangelos Pournaras. “Build digital democracy A WISE KING?” In: Nature
527.7576 (2015), pp. 33–34. ISSN: 0028-0836. DOI: 10.1038/527033a.

[24] Dirk Helbing et al. “Ethics of Smart Cities: Towards Value-Sensitive Design and Co-Evolving
City Life”. In: Sustainability 13.20 (2021). ISSN: 2071-1050. DOI: 10.3390/su132011162.
URL: https://www.mdpi.com/2071-1050/13/20/11162.

[25] Dan Hendrycks and Kevin Gimpel. “Gaussian error linear units (gelus)”. In: arXiv preprint
arXiv:1606.08415 (2016).

[26] Jui-Ting Huang et al. “Embedding-based retrieval in facebook search”. In: Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020,
pp. 2553–2561.

[27] Hisao Ishibuchi et al. “Evolutionary many-objective optimization by NSGA-II and MOEA/D
with large populations”. In: 2009 IEEE International Conference on Systems, Man and Cyber-
netics. IEEE. 2009, pp. 1758–1763.

[28] Eric Jang, Shixiang Gu, and Ben Poole. “Categorical reparameterization with gumbel-softmax”.
In: arXiv preprint arXiv:1611.01144 (2016).

[29] R. W. Kates et al. “Sustainability Science”. In: Science 292.5517 (2001), pp. 641–642. ISSN:
00368075. DOI: 10.1126/science.1059386.

[30] A Kelly, W Becker, and E Helsing. “Food balance sheets”. In: Food and health data: their use
in nutrition policy-making. Copenhagen: WHO Regional Office for Europe (1991), pp. 39–47.

[31] Ed Klotz and Alexandra M Newman. “Practical guidelines for solving difficult mixed integer
linear programs”. In: Surveys in Operations Research and Management Science 18.1-2 (2013),
pp. 18–32.

[32] Ariel Kulik and Hadas Shachnai. “There is no EPTAS for two-dimensional knapsack”. In:
Information Processing Letters 110.16 (2010), pp. 707–710.

[33] Kyuseop Kwak, Sri Devi Duvvuri, and Gary J Russell. “An analysis of assortment choice in
grocery retailing”. In: Journal of Retailing 91.1 (2015), pp. 19–33.

[34] Ziwei Li and Sai Ravela. “Neural Networks as Geometric Chaotic Maps”. In: IEEE Transac-
tions on Neural Networks and Learning Systems (2021).

[35] Hui Lu et al. “The effects of using chaotic map on improving the performance of multiobjective
evolutionary algorithms”. In: Mathematical Problems in Engineering 2014 (2014).

[36] Thibaut Lust and Jacques Teghem. “The multiobjective multidimensional knapsack problem:
a survey and a new approach”. In: International Transactions in Operational Research 19.4
(2012), pp. 495–520.

[37] Talha Manzoor et al. “Optimal control for sustainable consumption of natural resources”. In:
IFAC Proceedings Volumes 47.3 (2014), pp. 10725–10730.

[38] R.T. Marler and J.S. Arora. “Survey of multi-objective optimization methods for engineering”.
In: Structural and Multidisciplinary Optimization 26.6 (2004), pp. 369–395. ISSN: 1615-1488.
DOI: 10.1007/s00158-003-0368-6.

7

https://doi.org/10.1007/978-1-0716-2197-4_23
https://doi.org/10.1007/978-1-0716-2197-4_23
https://doi.org/10.1007/978-1-0716-2197-4_23
http://www.fao.org/3/X9892E/X9892e05.htm
http://www.fao.org/3/X9892E/X9892e05.htm
https://doi.org/10.1038/527033a
https://doi.org/10.3390/su132011162
https://www.mdpi.com/2071-1050/13/20/11162
https://doi.org/10.1126/science.1059386
https://doi.org/10.1007/s00158-003-0368-6

[39] Ali Mirdar Harijani, Saeed Mansour, and Behrooz Karimi. “A multi-objective model for
sustainable recycling of municipal solid waste”. In: Waste Management & Research 35.4
(2017), pp. 387–399.

[40] Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. “A metric learning reality check”. In:
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XXV 16. Springer. 2020, pp. 681–699.

[41] Priyanka Nigam et al. “Semantic product search”. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2019, pp. 2876–2885.

[42] “NNIA-RS: A multi-objective optimization based recommender system”. In: Physica A: Statis-
tical Mechanics and its Applications 424 (2015), pp. 383–397. ISSN: 0378-4371. DOI: https:
//doi.org/10.1016/j.physa.2015.01.007. URL: https://www.sciencedirect.
com/science/article/pii/S0378437115000096.

[43] Arnault Pachot et al. “Multiobjective recommendation for sustainable production systems”. In:
MORS workshop held in conjunction with the 15th ACM Conference on Recommender Systems
(RecSys), 2021. Amsterdam, Netherlands, Sept. 2021. URL: https://hal.archives-
ouvertes.fr/hal-03349092.

[44] Gourab K Patro et al. “Towards safety and sustainability: Designing local recommendations
for post-pandemic world”. In: Fourteenth ACM Conference on Recommender Systems. 2020,
pp. 358–367.

[45] Joseph Poore and Thomas Nemecek. “Reducing food’s environmental impacts through pro-
ducers and consumers”. In: Science 360.6392 (2018), pp. 987–992.

[46] Prajal Pradhan et al. “A systematic study of sustainable development goal (SDG) interactions”.
In: Earth’s Future 5.11 (2017), pp. 1169–1179.

[47] Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. “Sequence-Aware Recommender
Systems”. In: ACM Comput. Surv. 51.4 (2018). ISSN: 0360-0300. DOI: 10.1145/3190616.
URL: https://doi.org/10.1145/3190616.

[48] Francesco Ricci, Lior Rokach, and Bracha Shapira. “Introduction to recommender systems
handbook”. In: Recommender systems handbook. Springer, 2010, pp. 1–35.

[49] Victor Schmidt et al. CodeCarbon: Estimate and Track Carbon Emissions from Machine
Learning Computing. https://github.com/mlco2/codecarbon. 2021. DOI: 10.5281/
zenodo.4658424.

[50] Alain Starke. “RecSys Challenges in achieving sustainable eating habits.” In: HealthRecSys@
RecSys. 2019, pp. 29–30.

[51] Sabina Tomkins et al. “Sustainability at scale: towards bridging the intention-behavior gap with
sustainable recommendations”. In: Proceedings of the 12th ACM Conference on Recommender
Systems. ACM. 2018, pp. 214–218.

[52] UN. Global Sustainable Development Report: 2015 edition. Tech. rep. United Nations, 2015,
p. 202.

[53] Jeroen Van den Hoven. “ICT and value sensitive design”. In: The information society: Innova-
tion, legitimacy, ethics and democracy in honor of Professor Jacques Berleur SJ. Springer,
2007, pp. 67–72.

[54] Ashish Vaswani et al. “Attention is all you need”. In: Advances in Neural Information Process-
ing Systems. Curran Associates, Inc., 2017, pp. 5998–6008.

[55] Yash Vesikar, Kalyanmoy Deb, and Julian Blank. “Reference Point Based NSGA-III for
Preferred Solutions”. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI).
2018, pp. 1587–1594. DOI: 10.1109/SSCI.2018.8628819.

[56] Ricardo Vinuesa et al. “The role of artificial intelligence in achieving the Sustainable Develop-
ment Goals”. In: Nature communications 11.1 (2020), pp. 1–10.

[57] Zhaoyuan Wang et al. “Food package suggestion system based on multi-objective optimization:
A case study on a real-world restaurant”. In: Applied Soft Computing 93 (2020), p. 106369.

[58] Jake Weiner et al. “Automatic decomposition of mixed integer programs for lagrangian relax-
ation using a multiobjective approach”. In: Proceedings of the 2020 Genetic and Evolutionary
Computation Conference. 2020, pp. 263–270.

[59] Chao-Yuan Wu et al. “Sampling matters in deep embedding learning”. In: Proceedings of the
IEEE international conference on computer vision. 2017, pp. 2840–2848.

8

https://doi.org/https://doi.org/10.1016/j.physa.2015.01.007
https://doi.org/https://doi.org/10.1016/j.physa.2015.01.007
https://www.sciencedirect.com/science/article/pii/S0378437115000096
https://www.sciencedirect.com/science/article/pii/S0378437115000096
https://hal.archives-ouvertes.fr/hal-03349092
https://hal.archives-ouvertes.fr/hal-03349092
https://doi.org/10.1145/3190616
https://doi.org/10.1145/3190616
https://github.com/mlco2/codecarbon
https://doi.org/10.5281/zenodo.4658424
https://doi.org/10.5281/zenodo.4658424
https://doi.org/10.1109/SSCI.2018.8628819

[60] Xu Xie et al. “Contrastive learning for sequential recommendation”. In: 2022 IEEE 38th
international conference on data engineering (ICDE). IEEE. 2022, pp. 1259–1273.

[61] Xuefeng F Yan, Dezhao Z Chen, and Shangxu X Hu. “Chaos-genetic algorithms for optimizing
the operating conditions based on RBF-PLS model”. In: Computers & Chemical Engineering
27.10 (2003), pp. 1393–1404.

[62] Penghang Yin et al. “Understanding Straight-Through Estimator in Training Activation Quan-
tized Neural Nets”. In: International Conference on Learning Representations. 2018.

[63] You Yong, Sheng Wanxing, and Wang Sunan. “Study of chaos genetic algorithms and its
application in neural networks”. In: 2002 IEEE Region 10 Conference on Computers, Commu-
nications, Control and Power Engineering. TENCOM’02. Proceedings. Vol. 1. IEEE. 2002,
pp. 232–235.

[64] Hossein Zare and Masoud Hajarian. “Determination of regularization parameter via solving
a multi-objective optimization problem”. In: Applied Numerical Mathematics 156 (2020),
pp. 542–554.

[65] Yong Zheng and David (Xuejun) Wang. “A survey of recommender systems with multi-
objective optimization”. In: Neurocomputing 474 (2022), pp. 141–153. ISSN: 0925-2312.
DOI: https://doi.org/10.1016/j.neucom.2021.11.041. URL: https://www.
sciencedirect.com/science/article/pii/S0925231221017185.

[66] Eckart Zitzler and Lothar Thiele. “Multiobjective optimization using evolutionary algo-
rithms—a comparative case study”. In: International conference on parallel problem solving
from nature. Springer. 1998, pp. 292–301.

[67] Yi Zuo et al. “Personalized recommendation based on evolutionary multi-objective optimiza-
tion [research frontier]”. In: IEEE Computational Intelligence Magazine 10.1 (2015), pp. 52–
62.

A Appendix: Data Preprocessing

This section contains more details on the data preprocessing procedure to generate the synthetic
dataset. The Dunnhumby transaction data quantities are included in US imperial units and conversion
to the metric system was done in the following manner: (i) Unit labels are identified and grouped
together with regular expressions and manual corrections, e.g., "LB, lb, LBs" all represent the same
label which denotes pounds. (ii) Weight and volumetric labels are separated and proper conversion
coefficients are used to convert each unit to the corresponding metric unit used in the other datasets.
(iii) Prices may change over time, so the mean price per unit is calculated through time and overall
stores to generate the price features used by all algorithms. After processing, the dataset contains
almost 885’000 transactions corresponding to approximately 167’000 baskets purchased by almost
2’500 households. The transactions were performed over a period of 709 days across 489 distinct
stores. The proposed multi-objective recommender systems in the current article can also be applied
to any dataset and basket selection problem that involves multiple objectives relevant to product
characteristics.

All three source datasets contain different product type labels for each product. From "The Complete
Journey Dataset" the "SUB_COMMODITY_DESC" column is treated as the product identifier. Each
value of the column "SUB_COMMODITY_DESC" is matched against the "product category" column
from the FAO FBS dataset and the dataset column "product" from Ref [45]. The resulting dataset
contains transaction prices, purchased quantities, environmental impact values, and nutritional info
per transaction.

The FAO product categorization is used to identify products, and thus the product set is considered to
contain 132 distinct products. The proposed dataset1 is used to motivate and estimate environmental
impact, consumer preferences, purchasing costs, and nutritional values of recommended baskets.

For the dataset factors, e.g., price and emissions per unit, as the total quantities per unit may change,
we may need to calculate aggregate values of these factors, such as the mean price over the same
product. We also tested other estimators, such as the median values. Any measure of central tendency
or the actual values at a current time and retailer store can be considered. In a real-world application,

1The relevant code will be made available publicly, but the release of the final dataset is pending confirmation
from Dunnhumby.

9

https://doi.org/https://doi.org/10.1016/j.neucom.2021.11.041
https://www.sciencedirect.com/science/article/pii/S0925231221017185
https://www.sciencedirect.com/science/article/pii/S0925231221017185

where the purchased basket is not known, the consumer may provide an intended basket via a
shopping list interface or an e-shop basket interface.

B Optimization Objectives

Personal Objectives: We consider consumer preference over similar baskets to the intended one
as the first personal to optimize when the recommended basket x is as similar as possible to the
intended basket x∗. High similarity between a recommended basket xxx and the target/intended x∗

indicates a higher likelihood of a purchase under a counterfactual hypothesis, in which the consumer
would consider recommended baskets before purchase. The first objective function to minimize
depends on the cosine similarity between the recommended and intended basket J1 (x,x∗) =
1− x>x∗/‖x‖ ‖x∗‖.
The next personal value considered in optimization is a function of cost. In general, it is assumed
that individuals would prefer to minimize expenses and select cheaper baskets that satisfy their taste.
Next, the cost ratio between recommended and intended basket costs is calculated as an objective
function: J2 (x,x∗) = ρ2(x,x

∗). Here we observe a direct trade-off with objective J1. For example,
the intended basket optimizes J1 but not J2, which is optimized by an empty basket.

Next, we consider basket health/nutritional values. For each unit of product i and nutritional product
feature j the nutritional quantity per unit ci,j is calculated. Three nutritional features are denoted
by indices j ∈ {3, 4, 5}. The health objective functions, namely Jj (x, x̂) = (1− ρj(xxx,xxx∗))2 =

(vj(x
∗)− vj(x)/vj(x∗))2 , j ∈ {3, 4, 5}, use the intended basket’s nutritional value as a baseline to

evaluate the difference for each nutritional feature between recommended and intended baskets

Environmental Impact Objectives: Collective environmental values are also considered based on
the provided data from Ref. [45]. In total, a set of six environmental impact criteria are considered for
each product, as shown in Table 2, namely greenhouse gas (GHG) emissions, which contribute to cli-
mate change, acidifying pollution that decreases fertility and can cause desertification, eutrophication
pollution, which destabilizes food chains in ecosystems, water usage that has several environmental
effects, stress-weighted water usage that takes into account whether the water is taken from arid/dry
lands, and land usage, which is important to resource allocation for farming and deforestation. The
mean product features per unit are used as coefficients ci,j for calculating vj, j > 5. Similar to
the price objective, the ratio between the intended and recommended basket of each environmental
impact feature is considered an objective function: Jj (x,x∗) = ρj(xxx,xxx

∗)

C Appendix: Evolutionary Algorithms and Multi-Objective Optimization

Typically each basket, or solution2 in the optimization context, xxx is mapped to an objective vector
ζζζ(xxx) ∈ RM , where each vector element represents an objective function value ζj = Jj(xxx). Often,
such algorithms improve a set of an initial population of solutions Xτ by applying probabilistic
operators on each solution vector xxx, such as the random crossover. Random crossover randomly
combines elements from different solutions xxx,xxx′ with probability p

xi =

{
x′i if δ < p

xi otherwise
, (1)

where δ is sampled from a probability density function δ ∼ f with finite support [0, 1]. Another
probabilistic mechanism is the random mutation, e.g., replacing an element of the solution with a
random number sampled from a probability distribution κ ∼ fdiscrete to an element of the solution

xi = κ. (2)

Each new solution is evaluated based on the corresponding objective vector ζζζ(xxx), and a selection of
solutions is performed. Typically, a non-dominated sorting is performed to select non-dominated
solution candidates from new solutions and the initial population. The non-dominated sorting
is performed recursively, i.e., each time a non-dominated set Fα is selected, the non-dominated

2The term solution will be used in the sections that describe models in accordance to literature.

10

solutions are assigned to a non-dominated front Fα and then removed from the population. A new
non-dominated search is performed on the remaining population solutions to determine the non-
dominated front Fα+1. This process repeats until all solutions are assigned to a front. A possible
selection mechanism would select all non-dominated solutions, i.e., the solutions in F1. The selected
solution candidates are preserved in a new population of solutions Xτ+1 and the whole process
(crossover, mutation, selection) is repeated until a convergence criterion is met, e.g., no new solutions
are preserved in a population after an iteration. We denote τ as a generation index. A widely used
algorithm that follows the above strategy for multi-objective optimization is the Non-dominated
Sorting Genetic Algorithm II (NSGA-II) [15].

C.1 RNSGA-II

A non-dominated sorting algorithm may produce a high number of non-dominated solutions that are
not preferable, e.g., solutions that optimize a single objective very well and not the others. We aim
to keep the population size B per generation constant, so a secondary selection operation must be
performed. Random selection is often undesired in problems with multiple objectives [14]; thus, a
more sophisticated technique is preferred. Some probabilistic evolutionary algorithms use a sorting
operation to perform a secondary selection operation that guides the evolutionary processes towards
preferred non-dominated solutions, e.g., non-dominated solutions that optimize specific combinations
of the objectives very well. A typical example used as a baseline in the current study is reference
point NSGA-II, abbreviated as RNSGA-II [14], which uses reference directions to guide evolution
towards preferred solutions. In brief, one or more reference points are selected to guide the evolution.
A reference point ζ̂ζζ is generated by providing the system with a vector of preferred objective values.
Each candidate solution receives two ranks determined by the non-dominated sorting and a distance
metric from each reference point, i.e., lower distance values receive lower ranks. Lower ranks are
used to select the candidates for the next generation. This algorithm shows higher performance
gains than NSGA-II to perform better on multi-objective problems with more than 2 objectives [14].
RSNGA-II is used as a baseline in the current study following the default implementation of [7].

A logistic map [21] is applied on the initial basket to generate the initial solution for RNSGA-II,
improving performance considerably compared to other random initializations. Several reference
point settings are tested for RNSGA-II. The current reference points provided to RNSGA-II are three:
one that is calculated by using the infeasible optimum, where every loss is 0, one that minimizes
all individual losses (e.g., all values for j ≤ 5 are 0 and the rest are 1), and one that minimizes all
environmental losses (e.g., all values for j > 5 are set to 0). Using less than two reference points
often resulted in bad performance. Other reference point settings were tested on 100 intended baskets,
such as using the intended basket or minimizing specific losses on smaller samples. However, whether
this leads to better performance needs to be clarified. The current reference point setup was chosen as
it provided the best-performing dominance ratio compared to other baselines. Integer exponential
crossover and polynomial mutation are used for the genetic operators. Finally, other settings were
tested with up to B = 100. However, they were omitted due to lower dominance ratio, slower
convergence times, large number of solutions, and difficulty in determining subsets of reasonable
solutions.

C.2 MO-NES

Another way to handle multi-objective optimization problems is the use of MO-NES [22], which uses
a gradient-guided search algorithm to find non-dominated solutions by parametrizing a probabilistic
model (relies on sampling). The algorithm optimizes the parameters of a model that samples solutions
from underlying distributions. For each solution, a sample vector zzz ∈ RN is generated, where
each element is sampled from a normal distribution zi ∼ N(0, 1). A new solution xxx′ is calculated
based on a parent solution xxx′ = xxx + σAzzz, where σ ∈ R,A ∈ RN×N are the co-variance related
terms. Samples from the previous population Xτ and the new candidates xxx′ are combined into an
intermediate population X′. Each solution xxx ∈ X′ is assigned a rank α based on the non-dominated
sorting. A secondary rank β is assigned to each solution based on the value of a hyper-volume
metric [22, 66] in descending order. To calculate the hyper-volume metric, a dominated reference
point ζζζ(0) ∈ RM is selected in the objective space, such that all considered solutions xxx ∈ X′ dominate
this point ζζζ(xxx) ≺ ζζζ(0). The hyper-volume metric [66] is used to calculate the hyper-volume between

11

each solution and the dominated reference point, e.g., by using the proposed implementation of
Ref. [20].

The hyper-volume metric is calculated on standardized loss values by subtracting the mean loss and
dividing it by their standard deviation over all solutions. The covariance-related parameters A, σ
are updated with a gradient update. A modified version of MO-NES, where solutions are rounded
and negative values are clipped to 0 prior to evaluation, is used as a baseline in the current article.
The initial value of each solution is sampled as xi = ReLU(x), x ∼ N(0, 0.2). Parameter σ = 1/3
and elements of A were initialized uniformly in [0, 0.001]. Following notation from Ref. [22], the
learning rates for each parameter are η+σ = 0.01, η−σ = 0.01/5 and ηA = 0.01/4. MO-NES trains
up to 40 generations.

C.3 Gradient Guided Genetic Algorithm

Probabilistic algorithms may suffer from slow convergence [27], especially on high dimensional
problems. Dependence on randomness and selection of random seeds may also be considered a
challenge [21, 35]. Recently, deterministic chaos genetic algorithms have been proposed to calculate
solutions in a deterministic and seemingly more efficient manner [61, 63]. Furthermore, chaotic maps
seem very promising for sparse and highly dimensional problems as they can control entropy [21]
and the performance of the optimization procedures. For example, genetic algorithms may show
improved performance if a logistic map [21] is used to sample initial solutions around the intended
basket. Nevertheless, chaos genetic algorithms do not use explicit feedback from the loss function,
such as MO-NES [22], and often the selection of adequate chaotic maps requires extensive hyper-
parameter optimization [21, 35]. This article investigates another potential design, where neural
networks perform mutation and crossover operators or initialize the population instead of chaotic
maps. Neural networks show promising capabilities to learn chaotic maps and strange attractors [34],
and back-propagation can be used to learn the parameters of the neural networks and control the
chaotic behavior to improve solutions across generations. This article proposes a novel gradient-
guided genetic algorithm by combining design concepts from chaotic genetic algorithms and neural
networks. G3A may evolve a population of solutions conditional to input data (such as the coefficient
matrix) by performing gradient-guided genetic operations. An overview of G3A is provided based on
Figure 1b.

C.3.1 Population Initialization

An initial population matrix X0 is calculated by applying the untrained neural mutation from t = 0
to t = T . B solutions are selected during initialization by sampling the mutation trajectory every
∆t = T/B. During each generation, a population matrix Xτ ∈ NB×N0 is created, where each row
represents a recommended solution.

C.3.2 Neural Crossover

A neural crossover operator is then applied to the population matrix and generates an offspring solution
for each solution in the initial population. The main neural network component is a transformer
network ftransformer : NB×N0 → RB×B×N with Gaussian Error Linear Unit [25] (GeLU) activation
functions as hidden layers [54]. Each parent solution xxx is compared with the rest of the population
matrix Xτ . For each element xi of the parent solution, the transformer generates an attention vector
ggg ∈ RB over all solutions in the population. The element x̂i,b is selected from the b-th parent in the
population that received the maximum attention value from the transformer b = argmaxb gb.

This work’s multi-head attention transformer networks contain 1 encoder and 1 decoder layer with
GeLU activation functions and 11 heads. Replacing the crossover network with probabilistic operators
or simpler neural network architectures has not yielded better results so far but is still a subject of
study and future work. Both of the transformer encoder and decoder layers contain a hidden layer
with 2048 hidden neurons and, layer norm layers in output and input and also dropout operations on
neuron outputs3. A sigmoid activation is then applied to the attention values and each selected parent
element is used to calculate an “offspring” solution element x′i in the following manner:

x′i = sigmoid(gk)xi + (1− sigmoid(gb))x̂i,b. (3)
3according to the default implementation found in https://pytorch.org/docs/stable/generated/

torch.nn.Transformer.html (accessed October 2021)

12

https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html
https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html

C.3.3 Neural Mutation

Next, a mutation operator neural network u(x(t)) : RB×N → RB×N evolves a solution x(t) in
continuous time t by applying the following neural ODE control

ẋ(t) = u(x(t)). (4)
A neural ODE solve [11] scheme is used to calculate the continuous time evolution between sub-
sequent genetic generations, e.g., x(0) → xxx(T). The underlying neural network has sinusoidal
activation functions in the hidden layer, inspired by the sinusoidal iterator used in Ref. [35]. The
evolution period is [0, 1] and a single hidden layer with 256 neurons. To select the solutions that are
preserved for the next generation, a finite number of mutated solutions is sampled uniformly across
time for each solution xxx(0) of the current generation τ at predetermined time-steps within the ODE
solver. The output activation of the neural network is a Rectifier Linear Unit (ReLU) activation [54],
which removes negative product quantities from each solution.

Neural network weights and activation functions generate real-valued solutions. The proposed
problems require discrete product quantities in the solution. Therefore, a discretization operation that
allows gradient propagation is applied to each solution. G3A can be viewed as an extension of neural
ODEs control [3, 8] with discrete events [12] to MIP problems.

C.3.4 Straight-through Discretization: Fractional Decoupling

Neural networks are known to operate in real value settings, as back-propagation requires the output
of neural networks to be continuous and differentiable with regard to objective functions, so that the
chain rule can be efficiently applied. Continuous outputs are incompatible with end-to-end learning
mixed integer programming problem (MIP) solutions. Rounding neural network outputs creates a
challenge when back-propagating error for calculating the gradient as rounding functions are not
differentiable in its domain, particularly at the integer values

A potential approach is to train the neural networks in a real-valued manner and then apply rounding
when evaluating the solutions, e.g., applying a linear programming relaxation scheme [31, 44]. Such
relaxations may become problematic when considering shopping baskets over a wide variety of
products. Neural networks with many outputs may assign a small positive quantity over hundreds of
products to a single basket to optimize taste and environmental losses. In such case, many product
quantities are rounded to 0, yielding empty or very sparse baskets as solutions. Another approach
proposed in the literature is to use the Gumbel soft-max operator [28], which allows for gradient
propagation via the aforementioned straight-through estimators [62]. Since the decision problem
in question requires no upper bounds on purchased product quantities, using the Gumbel soft-max
operator may yield high dimensional outputs that may require more time to train for large-scale
problems.

An alternative approach, termed fractional decoupling, is proposed to efficiently calculate a gradient
update and perform gradient descent via a straight-through estimator [6, 62, 9]. To perform frac-
tional decoupling, one subtracts the fractional part hi of a real-valued output yi while treating the
fractional part as constant, i.e., this allows no gradient propagation through the fractional part in the
computational graph. This operation can be considered as a rounding straight-though estimator.

Illustrative Numerical Example of Fractional Decoupling

C.4 Numerical example of gradient flows with fraction decoupling

To illustrate the gradient flows after with discretization of fractional decoupling we provide an
illustrative example, which compares gradient flows of a 2-parameter network both with and without
fractional decoupling when solving the same problem. Given a predetermined coefficient vector
ŵ = [w1 w2] = [4 1] and normally distributed inputs x1, x2 ∼ N(µ = 0, σ = 1) we apply the
following transformation:

ŷ = bŵ � xc (5)

Given a batch matrix of 50 input vectors X ∈ R50×2 and their corresponding label matrix Ŷ ∈ R50×1

we train two neural networks. A neural network with continuous outputs during training, where the
floor function is applied only during inference:

f1(x) = y = w � x (6)

13

0 1 2 3 4 5 6

w1

0

1

2

3

4

5

6

w
2

1

2

3

4

|
w

J(
y)

|
(×

10
3)

(d) Continuous gradient descent.

0 1 2 3 4 5 6

w1

0

1

2

3

4

5

6

w
2

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

|
w

J(
y

h)
|

(×
10

3)

(e) Fractional decoupling gradient descent.

FIGURE 3: Gradient direction (orange lines), optimal solution (red cross), and lowest gradient norm point
(black disk).

and a separate neural network with a fractional decoupling term:

f2(x) = y − h. (7)

The mean squared loss is minimized during learning over a single batch of 50 samples:

J(f·(x)) =
1

50

50∑
1

1

2
‖f·(x)− ŷ‖22 . (8)

We take 40 weight values evenly spaced in the interval [0, 6] for each neural network parameter w1 w2

and generate all possible pairs (cartesian product). For each parameter vector of w = (w1 w2) we
calculate the gradients∇wJ(f1) and∇wJ(f2) respectively. The calculated gradients are illustrated in
Figure 3, where fractional decoupling better approximates the underlying coefficient vector. Using
fractional decoupling generally has little effect on the gradient direction and magnitude. The minimum
magnitude gradient points for each neural network are expected to be local minima for J(see black
disks in Figure 3). During inference fractional decoupling yields a lower loss value J(y−h)) ≈ 0.02
compared to the continuous neural network with floored output J(y)) ≈ 0.28.

C.4.1 Selection

A non-dominated sorting is performed across all discretized solutions to determine the best solutions
from each trajectory. The mean objective value per feature

ζj =

∑
xxx(t)∈F1

ζj(xxx(t))

|F1|
(9)

is calculated over all non-dominated solutions, i.e., all samples xxx ∈ F1, and then each element ζj
is used to calculate gradients and perform the parameter update. Mean objective values ζj can be
scaled before gradient calculation to match consumer preferences and guide the algorithm towards
non-dominated solutions that perform better in specific objective values. To select the B solutions
that are used as input population for the next generation, the hyper-volume and non-dominated ranks
are used [22] as described in the MO-NES baseline in Appendix C.2.

C.4.2 Back-Propagation Through Evolution

The back-propagation through evolution starts by calculating the individual objective function values
for each solution selected by the selection operator. For each objective, the mean value over all
selected individuals is calculated. Experimental results indicated that using a different optimizer for
each Neural Operator yields higher performance. The RMSProp optimizer is used with learning
rate η = 0.0001 for the neural mutation operator and an RMSProp optimizer with learning rate

14

η = 0.0001 for the Neural Crossover Operator. The gradient is calculated iteratively per objective,
and the loss is scaled 7 times for health objectives. Such scaling resembles a scalarization method [65]
optimization, although a weighted sum may not used for gradient calculation. Not scaling the loss
yielded recommendations that did not optimize health objectives well, as environmental and cost
objectives were often positive-correlated and dominated the gradient upgrades. In general, each
objective loss can also be scaled to match explicit consumer preferences. Consumers may rank
or score the most important objectives, and such scores can be used as scaling factors for the
objectives [4].

D Appendix: Experimental Evaluation

All baselines are evaluated in weekly basket purchases over 85 weeks for 500 households, and
28400 intended baskets are considered. In particular, the households are chosen based on their total
greenhouse gasses (GHG) emissions, i.e., the top 500 emission producers are selected. For each
recommendation, a ratio toward the intended basket’s cost, environmental impact, or nutritional
quantities is considered. Some ratio functions coincide with the proposed objective functions, but this
is not the case for nutritional losses, as the normalized MSE showed better convergence but required
scaling. Other GA baselines were also considered [13, 15, 55], but did not produce competitive
results and thus are skipped for brevity.

It is important to note that all three baselines were tested on a subset of potential hyper-parameters.
Hyper-parameter optimization was performed for several days to the extent that each method could
solve the problem effectively. From observed models, the best-performing parameterization per
method was selected. In future work, G3A will be compared against other optimization methods on
more established problems to determine performance in terms of optimality. Such a study was out
of the scope of this article. The population sizes were chosen after evaluating different values. The
sizes that generated well-performing solutions efficiently were preferred. G3A is parameterized to
generate B = 8 recommendations per intended basket, whereas RNSGA-II and MO-NES generate
B = 10 recommendations per intended basket.

Real-World Impact Comparison: A counterfactual scenario is evaluated to extend the comparison
of G3A and estimate the impact on total reduction values. 5000 counterfactual trajectories are sampled
for each model, each trajectory being 86 weeks long. For each trajectory, 25% of all intended baskets
is assumed to be replaced with a recommendation. The recommendation which replaces the intended
basket is chosen randomly4. Figure 4 illustrates the ability of all algorithms to achieve a considerable
reduction of environmental impact compared to the intended basket. For example, deciding to replace
25% of intended baskets with a G3A recommendation leads to a reduction of approximately 35
metric kilo-tons of CO2 eq. or approximately 1 billion liters of stressed freshwater for G3A. The
current results indicate that G3A performs similarly to RNSGA-II regarding environmental impact,
by removing less and adding more products. MO-NES instead produces recommendations that have
the most negligible impact on the consumer basket.

4In the current setting, a decision model for sampling, such as the one in [33] cannot be used because the
transactions of the current dataset may be affected by marketing campaigns and other covariates. Furthermore,
whether consumers were aware of sustainability issues when purchasing is not apparent. Thus, the modeling of
environmental impact decision factors may be invalid. Therefore, designing a valid decision model to estimate
the effect of a recommender system in this case is out of the scope of this article and could be considered as
future work.

15

2.54 × 10 4

9.11 × 10 2

6.98 × 10 2

3.52 × 10 1

2.45 × 10 4

8.79 × 10 2

6.82 × 10 2

3.24 × 10 1

2.5 × 10 4

8.98 × 10 2

6.77 × 10 2

3.62 × 10 1

2.71 × 10 4

9.71 × 10 2

7.26 × 10 2

3.87 × 10 1

10 10 2 10 3 10 4 10 5

Mean Energy (kCal)

Mean Protein (g)

Mean Fat (g)

Mean Cost ($)
G3A
RNSGA-II
MO-NES
Intended

(a) Mean nutritional value and cost per basket per
trajectory.

54

21

60

10

37

13

0% 20% 40% 60% 80%

Mean Removed Ratio: (%)

Mean Added Ratio: (%)

G3A
RNSGA-II
MO-NES

(b) Mean ratios of added and removed units per bas-
ket per trajectory.

1.02 × 10 6

3.51 × 10 5

1.86 × 10 3

1.24 × 10 3

3.47 × 10 7

1.06 × 10 9

9.37 × 10 5

3.45 × 10 5

1.96 × 10 3

1.27 × 10 3

3.85 × 10 7

1.24 × 10 9

5.73 × 10 5

2.09 × 10 5

1.19 × 10 3

7.63 × 10 2

2.28 × 10 7

7.2 × 10 8

10 2 10 4 10 6 10 8 10 10

Total Land Use Reduction (m 2)

Total GHG Emissions Reduction (CO 2 kg eq.)

Total Acidification Reduction (SO 2 kg eq.)

Total Eutrophication Reduction (PO 4 kg eq.)

Total Freshwater Reduction (L)

Total Str. Freshwater Reduction (L)

G3A
RNSGA-II
MO-NES

(c) Mean reduction of the total environmental impact of accepting recommendations versus purchasing only
intended baskets per sampled trajectory. Longer bars perform better.

FIGURE 4: Comparison of the impact per model over 5000 trajectories, where 25% of the intended basket
purchases is randomly replaced with a recommendation. Mean nutritional quantities per basket and trajectory
are reported (see a). Next (see b.), the mean value of added and removed units per basket is provided over
all recommendations and trajectories, where intended baskets are omitted for the calculation. The total
environmental impact and cost reduction are calculated per sample and then subtracted from the total quantities
of the original trajectory (only intended baskets are purchased). Although confidence intervals are calculated,
they are omitted as they are mostly too narrow and, thus, not visible in the log scale.

16

	Introduction
	Preliminaries
	Models
	Results
	Conclusion
	Appendix: Data Preprocessing
	Optimization Objectives
	Appendix: Evolutionary Algorithms and Multi-Objective Optimization
	RNSGA-II
	MO-NES
	Gradient Guided Genetic Algorithm
	Population Initialization
	Neural Crossover
	Neural Mutation
	Straight-through Discretization: Fractional Decoupling

	Numerical example of gradient flows with fraction decoupling
	Selection
	Back-Propagation Through Evolution

	Appendix: Experimental Evaluation

