Proof-of-concept: Using ChatGPT to Translate and
Modernize an Earth System Model from Fortran to
Python/JAX

Anthony Zhou Linnia Hawkins
Department of Computer Science Department of Earth & Environmental Engineering
Columbia University Columbia University
New York, NY 10027 New York, NY 10027
az2681Q@columbia.edu 1h3194Qcolumbia.edu

Pierre Gentine
Department of Earth & Environmental Engineering
Columbia University
New York, NY 10027
pg2328@columbia.edu

Abstract

Earth system models (ESMs) are vital for understanding past, present, and future
climate, but they suffer from legacy technical infrastructure. ESMs are primarily
implemented in Fortran, a language that poses a high barrier of entry for early
career scientists and lacks a GPU runtime, which has become essential for contin-
ued advancement as GPU power increases and CPU scaling slows. Fortran also
lacks differentiability — the capacity to differentiate through numerical code —
which enables hybrid models that integrate machine learning methods. Convert-
ing an ESM from Fortran to Python/JAX could resolve these issues. This work
presents a semi-automated method for translating individual model components
from Fortran to Python/JAX using a large language model (GPT-4). By translating
the photosynthesis model from the Community Earth System Model (CESM), we
demonstrate that the Python/JAX version results in up to 100x faster runtimes using
GPU parallelization, and enables parameter estimation via automatic differentiation.
The Python code is also easy to read and run and could be used by instructors in
the classroom. This work illustrates a path towards the ultimate goal of making
climate models fast, inclusive, and differentiable.

1 Introduction

Over the last decades, climate models have evolved from very coarse ocean-atmosphere models to
complex Earth system models including all Earth components — the ocean, atmosphere, cryosphere
and land and detailed biogeochemical cycle — [[12]] and are now being used to address a vast array of
questions from projecting natural sinks [14] to the impact of land use change on climate [[13]]. Over
decades of model development, Earth system models have become huge computing programs written
in Fortran or C, for legacy and compatibility reasons. Yet most early career scientists do not know
those languages, which hinders model development.

Further, because of their complexity, running these models is resource-intensive [35; 31]. Most
(perhaps all) models rely on parallelized CPU hardware, even though highly-parallelized code can
now be run more efficiently on Graphics Processing Units (GPUs) [[1] or Tensor Processing Units

Tackling Climate Change with Machine Learning: workshop at NeurIPS 2023.

(TPUs) [9]. Earth system modeling would dramatically benefit from hardware acceleration, so that
models could be run at higher resolutions and resolve important fine-scale processes like ocean eddies
or deep convection. Using high-level languages also makes model code robust to future hardware
evolution; this type of (r)evolution is already starting in other fields of physics [7} 3.

Finally, Earth System Models are starting to use machine learning (ML) to represent subgrid processes
[32; 11551405 4]]. Because of their native Python infrastructure, those machine learning components
are not straightforward to implement in Fortran- or C/C++-based Earth System Models and require
a bridge (e.g., Fortran to Python), without the flexibility to do online learning (updating between
ML and the physical code while the physical model runs) [30]] [8]. The missing piece is automatic
differentiation, which allows us to take the partial derivatives to any parameters in the code. Python has
many libraries supporting differentiation; one of these is JAX, which enables automatic differentiation
and hardware acceleration of Python code while maintaining a near-Python visual look [6].

In this work, we intend to break this Earth System Model language and hardware deadlock by
modernizing Earth System Model codes to run on modern hardware (e.g., GPUs) and enabling
automatic differentiation [25]] using Python and JAX to enhance both efficiency and precision [6],
while also making model development more inclusive. To realize this goal, our approach leverages
recent developments in large-language models (LLMs) to rapidly translate code from one language
to another [[19] [38]]. Specifically, we split the model into units using static analysis, develop a
topological sort order based on dependencies, and translate each unit using OpenAl’s GPT-4 [34].

Our contribution is twofold: we demonstrate the Python/JAX version’s utility through an example
model (leaf-level photosynthesis in the Community Land Model (CLM) of CESM), and we offer
open source tools to address translation challenges. As an added benefit, we also demonstrate that the
Python translation can be computationally more efficient than the original model by leveraging GPUs
with the JAX library.

2 Translation Workflow

Large language models alone cannot translate a whole codebase for two reasons. First, there are
more tokens (i.e., words) in a typical codebase than a model like GPT-4 can accept in its token limit.
Second, the model alone often writes incorrect code. To resolve these issues, we’ve implemented a
divide-and-conquer approach that splits a Fortran codebase into ordered units using static analysis,
generates Python/JAX translations using the GPT-4 API, and uses unit test outputs to iterate on the
generated code. Figure[I|shows the architecture of our translation process (see details in appendix).

Isolate Fortran source
code and dependencies

v

Use unit test output
Generate For- Generate Python P
. . to update unit
tran unit tests unit tests
tests and code

A

Y
[Generate Python code]—»[Do unit tests pass?]

Y
[Done]

Figure 1: Workflow for translating a climate model from Fortran to Python, using static analysis,
code generation, and unit testing.

3 Translation Evaluation

3.1 Runtime

We made several versions of the original photosynthesis code, which were mostly LLM-generated.
There are four Python versions: NumPy makes a direct translation of the algorithm from Fortran into
NumPy. Numba takes NumPy and adds just-in-time (jit) compiling using Numba [21]. SciPy uses a
SciPy library function for rootfinding [37], and JAX uses the JAX library for jit compilation. Note
that this JAX version, in contrast to the other Python versions, required substantial modification from
the LLM-generated code. See Figure [2|for a visual comparison.

The code we translated takes as input an initial value of internal partial pressure of CO2 in the leaf,
and iteratively solves for the x-intercept of a function for stomatal conductance based on this guess
[27] [22]. To generate these runtime results, we ran each of the versions (4 Python versions + 1 on
GPU, 1 Fortran version) using vectors sampling from a range of input values from 35 to 70 Pa.

Scaling with problem size
Runtime per 1M computations

10°
10"
@ ..\
e = ® JAX
E 10 @ _’/"-_, Numba
% ~ O O O @ Fortran
x -1
10
107
10" 10° 10° 10’ 10°

Size of input vector

Figure 2: Comparing runtime of leaf-level photosynthesis in several Python translations with the
original Fortran version. Runtime was measured on an Amazon EC2 G5.4xlarge instance with one
NVIDIA A10G GPU.

From the runtime results (smaller is better), we observe that JAX-GPU was the fastest, with Fortran
a full two orders of magnitude slower. JAX on CPU and Numba (both jit-compiled) are slightly slower
than Fortran. NumPy and SciPy are both even slower. From this we can conclude two things. First,
these results show that GPU parallelization on a GPU can lead to significant runtime improvements
relative to sequential Fortran on a roughly equivalent CPU (included with the same machine).
Second, even JAX-CPU and Numba perform reasonably well compared to Fortran, suggesting that
jit-compilation alone can make up for much of the speed difference between Fortran and Python.

3.2 Parameter Estimation

While the equations describing photosynthesis are well understood, there are many uncertain param-
eters that vary by plant species or even leaf position in the canopy. To demonstrate the usefulness
of automatic differentiation in Python, we chose one parameter to estimate: the maximum rate of
carboxylation, Vemax, which plays a key role in determining the co-limited rate of assimilation.

One method to obtain the optimal set of parameters, is by running a strategically sampled parameter
perturbation experiment, where multiple parameters are varied simultaneously to identify the best
set of parameters (e.g., [39]; [L8]; [10]). However, studies have shown that it is challenging to find
global optimal parameter settings that improve overall skill in a climate model (e.g., [26]; [11]). An
alternative method, inspired by machine learning, is using gradient descent to find parameter values

that align the model with measured data [33]]. Gradient descent has become an increasingly optimized
operation in Python, thanks to techniques like minibatches and stochastic methods [3].

o

An(umol/m?/s)
o

N

Uniform Sampling
=== Gradient Descent
o1 © e Measured

10 20 30 40 50 60 70
Ci(Pa)

Figure 3: Measured (points) and modeled (lines) relationship between the internal partial pressure of
CO2 (Pa) and the rate of assimilation (umol/m2/s). The modeled values use the Vcmax parameter
value selected using either uniform sampling (orange) or gradient descent (green).

In Figure[3] we compared parameter estimation methods for optimizing the Vemax parameter using
observed measurements of assimilation rate (An) at a range of partial pressures of CO2 within leaf
(observations from a Ponderosa pine tree at the US-Me2 AmeriFlux site in Central Oregon). We
employed a uniform sampling parameter perturbation scheme and gradient descent to identify the
Vcemax setting that minimized the error between the model simulations and observations. In this
simplified leaf-level model, uniform sampling and gradient descent converged to similar values
(Vemax=38.776 umol CO; m~2s~! and Vemax=38.383 umol CO, m~2s~! respectively), though
gradient descent took fewer iterations (10 gradient descent steps as opposed to 50 sample points in
uniform sampling) and achieves a lower loss value (7.26 and 6.39 respectively in mean squared error).

These results support the idea that gradient descent and automatic differentiation would also be more
efficient when estimating more parameters for multiple modules of CLM. Our code conversion to
JAX unleashes the use of ML-methods, such as stochastic gradient descent, for efficient parameter
tuning through automatic differentiation [2].

3.3 Future Work

While implementing automatic translation, we faced challenges including poor Fortran generation
quality, inaccurate unit tests, incorrect use of imported modules, and GPT-4 token limits. For scaling
up translation, next steps could include using data flow and compiler representations for translation
(as in [36] and [16]]), building logging to track function calls, and designing copilot-style interfaces to
support human translators. Solving these engineering challenges will further decrease the amount of
manual work involved in translating and modernizing climate models.

4 Conclusions

Migrating a full climate model from Fortran to Python, even with language models like ChatGPT, is
challenging due to important dependencies and logical errors in code generation. However, translating
individual components (like leaf-level photosynthesis) from Fortran to Python/JAX is both useful
and now within reach, and tools like the static analysis and language models presented in this work
will make this easier. Even with just a single component translated and modernized in Python,
one could experiment with parameter estimation, measuring sensitivity to parameters (quantifying
parametric uncertainty and getting faster feedback loops for model development), running on GPU,
and translating model components for offline experiments.

Eventually, this work aims to pave the way for the development of a future where climate models are
differentiable and GPU/TPU-friendly, making them faster and more accurate, while also written in

high-level languages so that they are more inclusive of junior scientists to accelerate progress on the
critical program of climate change modeling and adaptation.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
(9]

[10]

(1]

[12]

(13]

(14]

[15]

(16]

(17]

Toru Baji. Evolution of the gpu device widely used in ai and massive parallel processing. In 2018 IEEE
2nd Electron devices technology and manufacturing conference (EDTM), pages 7-9. IEEE, 2018.

Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: a survey. Journal of Marchine Learning Research, 18:1-43,
2018.

Deniz A Bezgin, Aaron B Buhendwa, and Nikolaus A Adams. Jax-fluids: A fully-differentiable high-order
computational fluid dynamics solver for compressible two-phase flows. Computer Physics Communications,
282:108527, 2023.

Thomas Bolton and Laure Zanna. Applications of deep learning to ocean data inference and subgrid
parameterization. Journal of Advances in Modeling Earth Systems, 11(1):376-399, 2019.

Léon Bottou. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade: Second Edition,
pages 421-436. Springer, 2012.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin,
George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. Jax: compos-
able transformations of python+numpy programs, 2018. URL http://github.com/google/jax.

Jean-Eric Campagne, Frangois Lanusse, Joe Zuntz, Alexandre Boucaud, Santiago Casas, Minas Karamanis,
David Kirkby, Denise Lanzieri, Yin Li, and Austin Peel. Jax-cosmo: An end-to-end differentiable and gpu
accelerated cosmology library. arXiv preprint arXiv:2302.05163, 2023.

Saul Carliner. An overview of online learning. 2004.

Stephen Cass. Taking ai to the edge: Google’s tpu now comes in a maker-friendly package. IEEE Spectrum,
56(5):16-17, 2019.

Fleur Couvreux, Frédéric Hourdin, Daniel Williamson, Romain Roehrig, Victoria Volodina, Najda Ville-
franque, Catherine Rio, Olivier Audouin, James Salter, Eric Bazile, Florent Brient, Florence Favot, Rachel
Honnert, Marie-Pierre Lefebvre, Jean-Baptiste Madeleine, Quentin Rodier, and Wenzhe Xu. Process-
based climate model development harnessing machine learning: I. a calibration tool for parameterization
improvement. Journal of Advances in Modeling Earth Systems, 13(3):e2020MS002217, 2021. doi:
https://doi.org/10.1029/2020MS002217. URL https://agupubs.onlinelibrary.wiley.com/doi/
abs/10.1029/2020MS002217.

K. Dagon, B. M. Sanderson, R. A. Fisher, and D. M. Lawrence. A machine learning approach to emulation
and biophysical parameter estimation with the community land model, version 5. Advances in Statistical
Climatology, Meteorology and Oceanography, 6(2):223-244, 2020. doi: 10.5194/ascmo-6-223-2020.
URL https://ascmo.copernicus.org/articles/6/223/2020/.

Paul N Edwards. History of climate modeling. Wiley Interdisciplinary Reviews: Climate Change, 2(1):
128-139, 2011.

Kirsten L Findell, Alexis Berg, Pierre Gentine, John P Krasting, Benjamin R Lintner, Sergey Malyshev,
Joseph A Santanello Jr, and Elena Shevliakova. The impact of anthropogenic land use and land cover
change on regional climate extremes. Nature communications, 8(1):989, 2017.

Pierre Friedlingstein, Malte Meinshausen, Vivek K Arora, Chris D Jones, Alessandro Anav, Spencer K
Liddicoat, and Reto Knutti. Uncertainties in cmip5 climate projections due to carbon cycle feedbacks.
Journal of Climate, 27(2):511-526, 2014.

Pierre Gentine, Mike Pritchard, Stephan Rasp, Gael Reinaudi, and Galen Yacalis. Could machine learning
break the convection parameterization deadlock? Geophysical Research Letters, 45(11):5742-5751, 2018.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun Deng, Colin B. Clement, Dawn Drain, Neel
Sundaresan, Jian Yin, Daxin Jiang, and Ming Zhou. Graphcodebert: Pre-training code representations with
data flow. CoRR, abs/2009.08366, 2020. URL https://arxiv.org/abs/2009.08366.

Chris Hansen and Ioannis Nikiteas. fortls, 2022. URL https://github.com/fortran-lang/fortls,

http://github.com/google/jax
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020MS002217
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020MS002217
https://ascmo.copernicus.org/articles/6/223/2020/
https://arxiv.org/abs/2009.08366
https://github.com/fortran-lang/fortls

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]
[35]

(36]

(371

Frédéric Hourdin, Thorsten Mauritsen, Andrew Gettelman, Jean-Christophe Golaz, Venkatramani Balaji,
Qingyun Duan, Doris Folini, Duoying Ji, Daniel Klocke, Yun Qian, Florian Rauser, Catherine Rio,
Lorenzo Tomassini, Masahiro Watanabe, and Daniel Williamson. The art and science of climate model
tuning. Bulletin of the American Meteorological Society, 98(3):589-602, 2017. doi: https://doi.org/10.
1175/BAMS-D-15-00135.1. URL https://journals.ametsoc.org/view/journals/bams/98/3/
bams-d-15-00135.1.xml

Enkelejda Kasneci, Kathrin SeBler, Stefan Kiichemann, Maria Bannert, Daryna Dementieva, Frank Fischer,
Urs Gasser, Georg Groh, Stephan Giinnemann, Eyke Hiillermeier, et al. Chatgpt for good? on opportunities
and challenges of large language models for education. Learning and individual differences, 103:102274,
2023.

Youngsung Kim and John Dennis. Kgen: Fortran kernel generator, 2019. URL https://github. com/
NCAR/KGen.

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-based python jit compiler. In
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, pages 1-6, 2015.

D. et al. Lawrence. Clm50 technical note. 2023. URL http://www.cesm.ucar.edu/models/cesm2/
land/CLM50_Tech_Note.pdf!

Ari M Lipsky and Sander Greenland. Causal directed acyclic graphs. JAMA, 327(11):1083-1084, 2022.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-train,
prompt, and predict: A systematic survey of prompting methods in natural language processing. CoRR,
abs/2107.13586, 2021. URL https://arxiv.org/abs/2107.13586.

Charles C Margossian. A review of automatic differentiation and its efficient implementation. Wiley
interdisciplinary reviews: data mining and knowledge discovery, 9(4):e1305, 2019.

D. McNeall, J. Williams, B. Booth, R. Betts, P. Challenor, A. Wiltshire, and D. Sexton. The impact of
structural error on parameter constraint in a climate model. Earth System Dynamics, 7(4):917-935, 2016.
doi: 10.5194/esd-7-917-2016. URL https://esd.copernicus.org/articles/7/917/2016/.

Belinda E Medlyn, Remko A Duursma, Derek Eamus, David S Ellsworth, I Colin Prentice, Craig VM
Barton, Kristine Y Crous, Paolo De Angelis, Michael Freeman, and Lisa Wingate. Reconciling the optimal
and empirical approaches to modelling stomatal conductance. Global Change Biology, 17(6):2134-2144,
2011.

Microsoft. Language server protocol, 2020. URL https://github.com/microsoft/
language-server-protocol.

OpenAl. Gpt - openai api, 2023. URL https://platform.openai.com/docs/guides/gpt/
chat-completions-api. Accessed: 2023-06-15.

Jordan Ott, Mike Pritchard, Natalie Best, Erik Linstead, Milan Curcic, and Pierre Baldi. A fortran-keras
deep learning bridge for scientific computing. Scientific Programming, 2020:1-13, 2020.

Tim Palmer. Climate forecasting: Build high-resolution global climate models. Nature, 515(7527):
338-339, 2014.

Stephan Rasp, Michael S Pritchard, and Pierre Gentine. Deep learning to represent subgrid processes in
climate models. Proceedings of the National Academy of Sciences, 115(39):9684-9689, 2018.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747,2016.

Katharine Sanderson. Gpt-4 is here: what scientists think. Nature, 615(7954):773, 2023.

Christoph Schir, Oliver Fuhrer, Andrea Arteaga, Nikolina Ban, Christophe Charpilloz, Salvatore Di Giro-
lamo, Laureline Hentgen, Torsten Hoefler, Xavier Lapillonne, David Leutwyler, et al. Kilometer-scale
climate models: Prospects and challenges. Bulletin of the American Meteorological Society, 101(5):
E567-E587, 2020.

Marc Szafraniec, Baptiste Roziere, Francois Hugh Leather Charton, Patrick Labatut, and Gabriel Synnaeve.
Code translation with compiler representations. /CLR, 2023.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: fundamental
algorithms for scientific computing in python. Nature methods, 17(3):261-272, 2020.

https://journals.ametsoc.org/view/journals/bams/98/3/bams-d-15-00135.1.xml
https://journals.ametsoc.org/view/journals/bams/98/3/bams-d-15-00135.1.xml
https://github.com/NCAR/KGen
https://github.com/NCAR/KGen
http://www.cesm.ucar.edu/models/cesm2/land/CLM50_Tech_Note.pdf
http://www.cesm.ucar.edu/models/cesm2/land/CLM50_Tech_Note.pdf
https://arxiv.org/abs/2107.13586
https://esd.copernicus.org/articles/7/917/2016/
https://github.com/microsoft/language-server-protocol
https://github.com/microsoft/language-server-protocol
https://platform.openai.com/docs/guides/gpt/chat-completions-api
https://platform.openai.com/docs/guides/gpt/chat-completions-api

[38] Justin D Weisz, Michael Muller, Steven I Ross, Fernando Martinez, Stephanie Houde, Mayank Agarwal,
Kartik Talamadupula, and John T Richards. Better together? an evaluation of ai-supported code translation.
In 27th International Conference on Intelligent User Interfaces, pages 369-391, 2022.

[39] D. Williamson, A.T. Blaker, C. Hampton, et al. Identifying and removing structural biases in climate models
with history matching. Clim Dyn, 45:1299-1324, 2015. doi: https://doi.org/10.1007/s00382-014-2378-z.

[40] Janni Yuval and Paul A O’Gorman. Stable machine-learning parameterization of subgrid processes for
climate modeling at a range of resolutions. Nature communications, 11(1):3295, 2020.

S Appendix

This appendix provides details on the implementation of the translation method, useful for those
who seek to build on this work. Our semi-automated translation process works in two steps: first we
divide the Fortran codebase into manageable chunks using static analysis. Second, we "conquer”
(translate) each of these chunks from Fortran to Python by running unit tests with iterative language
model generations.

5.1 Prompting

With large language models (LLMs), changing the prompt can significantly affect the generated
response [24]. Therefore, we developed a variety of prompts for the tasks of translating Fortran to
Python, writing Fortran unit tests, and writing Python unit tests. The GPT-4 Chat Completion API
accepts prompts in the form of chat messages [29]. In this work, we used the System message and
one User message for each API call, as shown in Table[T] Some sample outputs are shown in Table 2]

5.2 Divide

The goal of this step is to divide the large initial codebase into small problems, which can be solved
by the ‘conquer® module in order. We have two important constraints here: the sub-problems have
to be small enough that they fit within the LLM’s context length, and they have to be individually
testable.

If we want the code chunks to be short enough for a model’s context length, we should translate
one function at a time (the whole module would be too large for ChatGPT). We also note that the
functions must be translated in a particular order, because of their dependencies. For example,
consider the functions represented by Figure] In this case, we can’t use the ‘hybrid* function until
we’ve translated the other eight functions.

Since we have here a directed acyclic graph (DAG) [23]], a topological sorting algorithm would yield
a correct order for translating the functions one-by-one. This is exactly the approach we take for
dividing the problem: generate a dependency graph of symbols, and then use topological sorting to
determine an order of translation. For each unit of code, we then generate and run unit tests using
GPT-4 using prompts from Table[T]

5.2.1 Generating a dependency graph

To create a dependency graph, we take a two-step approach. First, we divide the codebase into
testable units (functions, types, or subroutines) and find the other units referenced by each unit. Then,
we form a dependency graph based on these references. These steps are marked as step 1 and 2 in

Figure[5]
To chunk the code into units and find references, one method is using a parsing tool such as fparser
to return a syntax tree from the original source code. However, these tools only work on single

files and can’t unambiguously locate function definitions, requiring manual searches. So a parser is
effective for chunking code but not for finding references.

To find references, there are at least two options. First, one could use the language server protocol
(LSP), used in text editors like VSCode for features like "Go to Definition" [28]] [[17]. Second, one
could prompt a language model, providing an index of all names in the project as context . This
second approach has its limitations, because the index may exceed context length and generations

Task System Prompt User Prompt
Generate Fortran ~ You’re a proficient Fortran Given Fortran code, write unit tests
unit tests programmer. using funit. Example:

FORTRAN CODE: [...]
FORTRAN TESTS: [...]
Your turn:

FORTRAN CODE: {fortran_code}
FORTRAN TESTS:

Translate Fortran
to Python

You’re a programmer proficient in
Fortran and Python.

Convert the following Fortran
function to Python.
¢¢‘{python_code}* ¢

Translate Fortran
unit tests to
Python

You’re a programmer proficient in
Fortran and Python.

Convert the following unit tests
from Fortran to Python using pytest.
No need to import the module under
test. ¢ ¢ ‘{unit_tests} ‘¢

Generate Python

You’re a programmer proficient in

Generate 5 unit tests for the

unit tests Python and unit testing. You can following Python function using
write and execute Python code by pytest. No need to import the
enclosing it in triple backticks, e.g. module under test.
“‘code goes here** ¢¢¢“{python_function}* ‘¢
Iteratively You're a programmer proficientin ~ Function being tested:

improve code

Fortran and Python. You can write
and execute Python code by

enclosing it in triple backticks, e.g.

¢¢‘code goes here‘‘‘.

When prompted to fix source code
and unit tests, always return a
response of the form:

SOURCE CODE:

¢ ¢‘<python source code>‘‘¢
UNIT TESTS:

¢¢‘<python unit tests>‘‘‘.
Do not return any additional
context.

{python_function}

Here are some unit tests for the
above code and the corresponding
output. Unit tests:
{python_unit_tests}

Output from ‘pytest‘:

¢ ¢¢ {python_test_results} ¢
Modify the source code to pass the
failing unit tests. Return a response
of the following form:

SOURCE CODE:

¢¢‘<python source code>‘‘*¢
UNIT TESTS:

¢¢‘<python unit tests>¢‘¢

Table 1: Prompts used for each task. Braces ({ }) represent interpolated variables from the current
translation task. Sections marked [...] were omitted for brevity.

may be unreliable. Given these downsides, LSP seems to be a good balanced approach for parsing
dependencies, given its proven reliability and efficiency with codebases of any size. In this work, we
created Python scripts using both LSP and fparser to compute dependency graphs. However, for even
better results, using a compiler’s data flow or control flow for ordered translation could be an exciting
future direction.

Our ultimate approach is documented in Figure 3]

5.2.2 Developing unit tests

Once we use dependency graphs to create units, each of these units needs to be unit tested. In other
words, we should be able to run a chunk of the Fortran code, along with the corresponding Python
translation, and get the same outputs for a given set of inputs. To do this, we propose (as future work)
implementing a logging tool, which would log the inputs and outputs for a Fortran function when it
runs within the original code. A tool like kgen would be good for this [20]]. Then we could use these
inputs and outputs to generate unit tests. For now, we rely on GPT-4 to generate unit tests using its
own knowledge, using the prompts from Table

quadratic max min

ci_fuydrun sign abs
bren
hybrid

Figure 4: Dependency graph for the function ‘hybrid‘ from the leaf-level photosynthesis module.
Each node corresponds to a function defined in this module, and each edge corresponds to a function
call.

5.3 Conquer

Assuming the divide step works well, we would want a consistent way to make GPT-4 write code that
passes our unit tests. To do this, we have implemented an iterative approach to code generation, which
takes in a chunk of Fortran code, along with corresponding unit tests, and generates corresponding
Python code and Python unit tests. Then we make a Docker image that runs the tests automatically.
If any tests cases fail, the test output gets passed back into the GPT-4 API, and it returns some revised
code. This approach is depicted in Figure[T]

5.4 Combining divide and conquer

In summary, we created a module for identifying the dependencies between symbols in Fortran source
code, as well as a command-line interface for generating and iteratively updating a Python translation.
To provide a proof of concept, here are some demonstrations of runtime and parameter estimation
for the leaf-level photosynthesis module from the Community Land Model, leveraging the power of
automatic differentiation for model parameter tuning.

main.f90
10)

f10 /...
/] ...
£20
oRO
/] ... /...
91()
£30) _—> 30

—
/] ... /] ...
g20)
util.f9e g1Q) e

/...
g1Q)
/] ...
g2()
=i ..

Figure 5: Visualization of code chunking process. In step 1, we chunk a codebase into individual units
using a parsing tool and trace references. In step 2, we use those references to form a dependency
graph.

10

Fortran Source Code

Fortran Unit Tests

elemental real(r8) function daylength(lat,

decl)

! ... some comments omitted for conciseness

module test_daylength

""" Compute max daylength for each grid cell"""
max_daylength = []
for g in range(bounds.begg,
max_decl = obliquity
if lat[g] < 0.0:
max_decl = —max_decl
max_daylength.append(daylength(lat[g],
return max_daylength

bounds.endg):

max_decl))

use shr-infan_mod, only :::i;:m:};;f(‘i")f"anfnan, & ! Tests of the daylength function in DaylengthMod
use shr_const_mod , only SHR_CONST_PI use fuml. .
! 1ARGUMENTS. use shr_kind_mod ., only r8 => shr_kind_r8
;-e;ll(rS) in'tent(in) o lat use shr_const_mod, only SHR_CONST_PI
real(rS)y intent (in) . decl use DaylengthMod , only daylength
! ILOCAL VARIABLES: i:‘V‘;““” none
:2::5;2; :'A;z.‘_lat real (r8), parameter :: tol = l.e-3_r8
. p . contains
! number of seconds per radian of hour—angle @Test
real (r8), parameter secs_per_radian = 13750.9871 _r8 sublloutine test_standard_points ()
! epsilon for defining latitudes "near" the pole ! Tests mul‘li;le oin/;p not edge cases
real (r8), parameter lat_epsilon = 10._r8 * epsilon(1l._r8) y § P P o edge cases
X X . . @assertEqual ([26125.331_r8, 33030.159_r87,
! Define an offset pole as slightly less than pi/2 to avoid daylength([=1.4 r8, -1.3_r8], 0.1 _r8)
! problems with cos(lat) being negative tolyerangce—lolj - e o ’
real(r8), parameter pole = SHR_CONST_PI/2.0 _r8 end subroutine :est standard points
real(r8), parameter offset_pole = pole — lat_epsilon @Test - -P
! lat must be less than pi/2 within a small tolerance subroutine le.sl_near_poles() .
if (abs(lat) >= (pole + lat_epsilon)) then ! Tests points near the north and south pole, which
daylength _ npn -¢P ! should result in full night and full day
aylength = nan . @assertEqual ([0.0_r8, 86400.0_r8],
! decl must be strictly less than pi/2 daylength ([—1.5 18, 1.5 r8], 0.1 _r8)
else if (abs(decl) >= pole) then y g‘ ST T oo ’
daylength = nan tolerance=tol)
, I cas end subroutine test_near_poles
él::rma case @Test
! Ensure that latitude isn’t too close to pole, to avoid sul’)routme test_edge_cases () .
! problems with cos(lat) being negative ! Tests the edge cases, not the valid cases
i . @assertEqual ([1.e100_r8, —-1.e100_r8],
my_lat = min(offset_pole , max(-1._r8 % offset_pole, lat)) daylength ([1.5 18 Z15 181, 0.1.18)
temp = —(sin(my_lat)+sin(decl))/(cos(my_lat) % cos(decl)) lolyerafce*toi)i ’ = o ’
temp = min(1._r8 max(-1._r8,temp)) end subroutine Iesl edge_cases
daylength = 2.0_r8 % secs_per_radian = acos(temp) -cdec
end if end module test_daylength
end function daylength
Python Source Code Python Unit Tests
import numpy as np
def daylength(lat, decl):
Calculate the length of the day (in hours) given the
latitude and the declination of the sun. This is import numpy as np
the number of seconds between sunrise and sunset. import pytest
Returns NaN if input arguments are invalid. from daylength import daylength
[more comments omitted for conciseness] # tolerance
tol = le-3
Number of seconds per radian of hour—angle
secs_per_radian = 13750.9871 def test_standard_points ():
assert np.allclose (daylength(np.array([-1.4, -1.3]), 0.1),
Epsilon for defining latitudes "near" the pole np.array ([26125.331, 33030.159]),
lat_epsilon = 10.0 = np.finfo (float).eps atol=tol)
pole = np.pi / 2 def test_near_poles ():
offset_pole = pole - lat_epsilon assert np.allclose(daylength(np.array([-1.5, 1.5]), 0.1),
np.array ([0.0, 86400.0]),
Lat must be less than pi/2 within a small tolerance atol=tol)
Decl must be strictly less than pi/2
lat = np.where(abs(lat) >= pole + lat_epsilon, np.NAN, lat) def test_north_pole ():
decl = np.where(abs(decl) >= pole, np.NAN, decl) assert abs(daylength(np.pi/2.0, 0.1) - 86400.0) < tol
assert abs(daylength(np.pi/1.999, 0.1) - 86400.0) < tol
my_lat = np.clip(lat, —offset_pole, offset_pole)
temp = —np.tan(my_lat) = np.tan(decl) def test_south_pole ():
temp = np.clip(temp, -1, 1) assert abs(daylength(-1.0 = np.pi/2.0, 0.1)) < tol
return 2.0 * secs_per_radian * np.arccos(temp) assert abs(daylength(-1.0 = np.pi/1.999, 0.1)) < tol
def test_error_in_decl ():
class Bounds: assert np.isnan(daylength(-1.0, -3.0))
def __init__(self, begg, endg):
self .begg = begg def test_error_in_lat_scalar ():
self .endg = endg assert np.isnan(daylength (3.0, 0.1))
def test_error_in_lat_array ():
def compute_max_daylength(bounds, lat, obliquity): my_result = daylength(np.array ([1.0, 3.0]), 0.1)

assert np.isfinite (my_result[0])
assert np.isnan(my_result[1])

Table 2: Sample outputs from a translation run on the day length function in the Community Land
Model. Clockwise from top-left: original Fortran code, original Fortran unit tests, generated Python

code, and generated Python unit tests.

11

	Introduction
	Translation Workflow
	Translation Evaluation
	Runtime
	Parameter Estimation
	Future Work

	Conclusions
	Appendix
	Prompting
	Divide
	Generating a dependency graph
	Developing unit tests

	Conquer
	Combining divide and conquer

