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Abstract

Ceilometers use a laser beam to capture certain phenomena in the atmosphere like
clouds, precipitation, or aerosol layers. These measurements can be visualized in so-
called quick looks that at the moment are mostly analyzed manually by meteorology
experts. In this work, we illustrate the path towards the automatic analysis of quick
looks by using a hybrid approach combining an image segmentation algorithm
with unsupervised representation learning and clustering. We present a first proof
of concept and give an outlook on possible future work.

1 Introduction

The German Weather Service DWD (Deutscher Wetterdienst) operates a large ceilometer network
with a size of more than 180 sites [1]. A ceilometer is a stationary LIDAR system for the measurement
of atmospheric phenomena like clouds, aerosols, and precipitation. Its basic principle is measuring
the backscattered light of a vertically pointing laser beam with a wavelength of 1064 nm. Depending
on the matter occurring in the atmosphere, the amount of backscattered light varies. It is higher for
rain clouds than for aerosols, for example. The altitude where backscattering occurred can be derived
by using the travel time of the emitted and then backscattered photons.

Based on these backscattering profiles, so-called quick looks are generated, which essentially are
the application of a defined color map to the measured values, usually spanning a single day. An
example is given in Fig. 1; the y-axis refers to the altitude and the x-axis to the time of the day. For
this example, the occurring phenomena are annotated, namely clouds, saharan dust, and background
aerosol. At the moment, the ceilometer data is manually analyzed by meteorology experts. Given
the large stream of data from all the different locations, it is not possible for the limited amount of
experts (and time) to examine every single backscattering profile. For this reason, in this work, a path
towards the automatic analysis of ceilometer backscattering profiles using deep learning is proposed.
The possible pathway to climate impact of such a system is twofold:

• Climate science insights by applying deep learning, like frequent, but not necessarily obvious,
phenomena in certain locations or at specific altitudes, which cannot be derived manually
because of the large amount of data.

• Automatic detection of situations with specific meteorological conditions for more detailed
case studies, e.g., on aerosol-cloud interactions.
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Figure 1: A ceilometer quick look from the location of Fürstenzell, April 9, 2018. Adapted from [2].

2 Hybrid Ceilometer Measurement Categorization Approach - A Prototype

The ceilometer data and resulting quick looks are unlabeled, i.e., annotations tagging the individual
phenomena like clouds do not exist. Thus, we have to make use of algorithms that are suitable for
unlabeled data.

1. Segmentation
(Image Processing, non-ML)

Output: 

Enriched Slice Representations

Output: 

Slices of individual window sizes

2. Representation Learning
(Autoencoder)

Learned

Slice Representation
Daytime Encoding

Month Encoding

3. Clustering
(k-Means)

Output: 

Assignment of slices to clusters

Figure 2: High-level overview of our hybrid clustering approach.

Our approach for a first prototype is visualized in Fig. 2. For our idea, we follow the intuition of
a meteorology expert. First, the expert takes a look at the quick look, differentiates the occurring
phenomena based on shape, position, and backscattering values (colors) and then groups them into
different phenomenon classes. We use a segmentation algorithm from “classic” image processing
(i.e., no machine learning) like Felzenszwalb-Huttenlocher [3] (FH) or Simple Linear Iterative
Clustering [4] (SLIC) to imitate this behavior to automatically detect the phenomena occurring in a
quick look. For example, clouds have a distinct dark color and shape, which makes them detectable
relatively easily by an image segmentation algorithm. We use the resulting segment boundaries
to generate slices of the detected phenomena as visualized in the bottom left of Fig. 2. In step 2,
vector representations (colored blue in Fig. 2) of the slices are learned using an autoencoder [5].
Since the daytime information is lost during the slicing step, we further incorporate it into the
representation by concatenating a daytime encoding (orange) to the autoencoder representation. The
month information (green) is also added to the representation to possibly capture seasonal patterns
better. Finally, the resulting vector representations are clustered using k-means [6, 7]. More details
on the implementation of the segmentation, autoencoder, and clustering steps and more insights into
the results can be found in the Appendix under A, B and C, respectively.

We use k = 8 clusters for our prototype and visualize the results in 2-d using PCA [8], see Fig. 3. In
general, it is apparent how reasonable clusters for the slice representations are found. For example,
the top left part of the projection captures low-altitude phenomena like fog (cluster colored in blue),
precipitation can be found in the cluster colored in purple, and clear skies or skies with some clouds
in the grey and brown clusters. During noon time, phenomena of high backscattering values at high
altitudes can be observed, visible by the apparent dark colors in the right to top right region. The
resulting clusters can be categorized by meteorology experts, possibly circumventing the labeling
process of the whole ceilometer dataset.
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Figure 3: Example segments for several coordinates in the PC1 and PC2 projection space and
interpretation thereof.

3 Conclusion and Outlook

We proposed an approach for the unsupervised, automatic categorization of ceilometer quick looks.
In a first prototype, we showed that the approach leads to a reasonable clustering of meteorological
phenomena.

While other works applying machine learning to ceilometer data exist, a “single-task” trend can
be observed. These works consist of using supervised learning to detect precipitation and fog [9],
combining ceilometer and sky camera data to train a classifier on cloud-type detection [10] and
applying machine learning to determine planetary boundary layer heights [11, 12]. On the contrary,
we propose a more “holistic”, vision-based approach with the aim of detecting all possibly occurring
phenomena.

Our approach described in Sec. 2 can also be considered a general framework for future work. I.e.,
while the single steps stay the same, each could be filled with a different algorithm or method.
For example, regarding the second step, self-supervised methods [13, 14] for more robust vector
representations could be applied. As for the clustering step, there exist deep learning clustering
approaches that combine representation learning and clustering in a single method [15, 16], which
would also be suitable for the ceilometer use case described in this thesis.

Overall, we consider our prototype the be a successful proof of concept for our unsupervised hybrid
ceilometer quick look categorization framework. The next steps will consist of adding more advanced
deep learning methods to the approach. We also plan to acquire a test dataset consisting of labeled
ceilometer quick looks to also - in addition to the qualitative evaluation above - quantitatively evaluate
the approach. Technically, the test dataset will consist of segmentation masks, making it possible to
evaluate the results both in regard to how well the single phenomena are segmented (i.e., the detected
shape) as well as to how successful their cluster assignment (class) is. Using the test dataset, mean
Average Precision (mAP) will be applied to evaluate the approach. It presents a metric that captures
the quality of both segmentation and clustering results which is crucial to successfully detect, e.g.,
aerosol-cloud interactions which could then be studied in a further step.
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A Segmentation

As described, in the first step the backscattering profile is segmented using “classical” image process-
ing algorithms. These segments are then used to create individual window sizes, depending on the
size of the respective phenomenon.

An open question is the choice of input representation. Naturally, the measured backscattering values
could be used as input. Alternatively, the RGB values resulting from applying a colormap to the
backscattering value could also be utilized. This could perhaps be closer to human intuition since
human experts rely on these colors to make an accurate classification of the displayed backscattering
profile. A comparison of these two options is given in Sec. A.1.

When it comes to segmentation algorithms, two widespread approaches are Felzenszwalb-
Huttenlocher [3] (FH) and Simple Linear Iterative Clustering [4] (SLIC). FH is a graph-based
algorithm, with the pixels being the vertices and the edge weights being a non-negative dissimilarity
measure (based on color and position). Iteratively, components (sub-graphs) are constructed that have
a small internal difference (e.g., neighbored parts of the image in similar color) and a high difference
to other constructed components. On the other hand, SLIC is an application of the k-means algorithm,
using the color (or grayscale) values and the position of the pixels for clustering. Both are evaluated
for the task of backscattering profile segmentation in Sec. A.2.

The resulting dataset that will be used for training an autoencoder in step 2 of the approach is
discussed in Sec. A.3.

A.1 Colors vs. Backscattering

Looking at the color scale on the right in Fig. 1, it can be seen that the applied color map is logarithmic.
This means that the backscattering values in the red and black regions of the image are roughly
ten times larger than in the yellow region and a hundred times larger than in the green regions,
respectively. Using these values as-is will overemphasize the red and black parts dramatically while
all other regions more or less get lost as noise. This would distort both the segmentation algorithm
and the autoencoder results as they would overvalue the red and dark parts. This should not be the
case, since all other regions of a profile are equally important. An example is given in Fig. 4, where
the “raw” values are used for segmentation with FH.

Figure 4: Using “raw” backscattering measurements overvalues high backscattering phenomena.
(Leipzig, September 22, 2017)

Here, all segments detected by FH (circled in magenta color) are those with very high backscattering
values. Some high backscattering phenomena like the clouds at higher altitudes are not even detected
at all. The aerosol at low altitude (orange regions) is not detected either. The results for SLIC are
comparable. For this reason, logarithmized values could be an appropriate preprocessing step. The
other way, as mentioned, is to directly use the color values from the backscattering profile image. In a
sense, colorizing can be seen as a conversion of backscattering values to (soft) multiclass affiliations
like 80 % red, 50 % green, and 20 % blue.

Fig. 5 shows a segmentation comparison between logarithmized backscattering values and colors
using FH. It is apparent that using colors leads to better segmentation. The clouds (red/black, top),
planetary boundary layer (green, bottom), and the background are separated well. By comparison,
using the logarithmized backscattering results in much noisier segment boundaries. The cloud in
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Colors Logarithmized Backscattering

Figure 5: Comparison between using colors and logarithmized backscattering values for
segmentation with FH. (Hersfeld, August 6, 2018)

the top-right is not even detected at all. It should be noted that the results of FH and SLIC are very
sensitive to their respective parameter settings. However, evaluating a wide range of parameters on a
set of 30 backscattering profiles, it was determined that using colors essentially always led to better
segmentation. For this reason, in the course of this work, color values will be used.

A.2 FH vs. SLIC

Fig. 6 shows a comparison between FH and SLIC segmentation for a given backscattering profile,
using color values as discussed in Sec. A.1.

SLIC

FH

Figure 6: Comparison between FH and SLIC. (Leipzig, January 9, 2018)

It can be seen that - in general - FH works better. The cutouts are more precise and very accurate
segments are generated. Using SLIC, the number of segments is parameterized (since it is based
upon k-means). In general, this is a problem since the number of phenomena can vary (highly) from
profile to profile. It also perhaps leads to the observed effect of all segments having a very similar
area size, which is also a problem considering that the phenomena differ significantly in terms of size.
SLIC does seem to work better in the green and yellow areas, however, there seems to be a degree
of over-segmentation. Judging from these observations, FH will be used in this work to generate an
individual window size for each phenomenon - keeping the option of further optimization for the
detection of the “soft transitions” (like in Fig. 6 between green, yellow and blue) in mind. It would
also be possible to only use the cut-out segment. However, using the whole height range is thought of
providing vital context to the subsequent steps. More details on FH and the final parameters used can
be found in Appendix A.4.
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A.3 Resulting Dataset

Finally, the FH segments can be used to create individual window sizes. To achieve this, simply the
minimal and maximal x value for a segment is determined and used to cut out the corresponding
window from the profile. An example is given in Fig. 7.

Clear Sky Clouds Precipitation

FH

Figure 7: Example of individual window sizes for a single profile. (Leipzig, January 6, 2014)

It can be seen that the different phenomena are in general successfully separated. In this case, the
three different types clear sky, clouds, and precipitation can be made out. Applying another set of
parameters to FH, it is possible to segment (for example) the precipitation windows on the right into
further smaller ones. However, this could also lead to over-segmentation in other places. Having
evaluated them on 30 backscattering profiles, the current FH settings are considered to provide
an overall good balance between over- and under-segmentation. Overlaps between segments are
accepted since some phenomena can actually overlap (for example two stacked clouds) and many
phenomena are fuzzy and transition smoothly between each other.

The DWD ceilometer data from Leipzig, ranging from the years 2014 to 2018, is used to create
a dataset consisting of such individually sized windows. Fig. 8 shows a histogram presenting the
distribution of slice durations in hours. Most slices are rather short in duration with the highest
amount being in the 0 to 1 hour range. This is plausible since there often exists some overlap between
segments and usually the many, smaller components of larger segments are detected separately as
well. There exists a spike in the 23-24 hour range. This can be traced back to the FH algorithm which
in some cases detects the whole day profile outline as a single segment. For now, these samples
are left in the dataset, since in some cases it might be sensible to use the whole day as a single
phenomenon. For example, when the whole day is constantly cloudy it is perfectly fine to detect all
24 hours as a single coherent segment.

Table 1 displays some statistical properties of the slice durations. The median being lower than the
mean again reflects there being outliers to the right (“whole day segments”). 25 % of the slices are
at maximum ca. 50 minutes long (0.82 hours), again showing that most slices are rather short. The
wide distribution of window sizes (i.e., not all window sizes being the same) support the hypothesis
that individual window sizes are the right choice for the detection of meteorological phenomena.

Table 1: Descriptive Statistics on slice durations/lengths.

Nmb. of Slices 26,034
Mean (h) 6.23
Std. deviation (h) 7.57
Median (h) 3.01
25 % percentile (h) 0.82
75 % percentile (h) 7.34

7



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Duration in hours

0

1000

2000

3000

4000

5000

6000

7000

Nu
m

be
r o

f s
am

pl
es

Slice Histogram

Figure 8: Histogram of slice durations.

A.4 Implementation

The scikit-image 0.19.1 implementation of FH was used:
skimage.segmentation.felzenszwalb.
The following parameters were applied: scale=1500, sigma=2, min_size=200.

B Representation Learning

In the next step, low-dimensional representations of the slices are learned using a convolutional
autoencoder [5], the architecture is visualized in Fig. 9. Since (these kinds of) neural networks
require a fixed-size input, all slices are resized to 128x128 pixels. The slice dataset (see Sec. A.3)
was split 80%-10%-10% into training, validation, and test datasets. Several latent space sizes were
evaluated and the dimensionality of 128 provided the best results. Lower dimensionalities led to
poorer reconstructions and higher dimensionalities did not provide better results.

128x128x3

64x64x8

2048

128

32x32x8
16x16x16

8x8x32

2048

8x8x32
16x16x16

32x32x8
64x64x8

128x128x3

Input Conv(3x3, Stride: 1)-MaxPool(2x2)-ReLU-BatchNorm Flatten Linear-ReLU

TransConv(2x2, Stride: 2)-ReLU-BatchNorm TransConv(2x2, Stride: 2)-Sigmoid

Nmb. of Parameters: 540,571

Batch Size: 128

Loss: Binary Cross-Entropy

Optimizer: Adam 

Figure 9: Architecture of the used autoencoder.

Some reconstructions are shown in Fig. 10. The reconstruction capture all the important parts
of the input: shapes, colors, and positions. The reconstruction is lossy, some of the details are
not reconstructed. This is expected and even deliberate since autoencoders belong to the class of
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lossy compression methods. Losing some of the details prevents overfitting and leads to better
generalization.

Original

Reconstruction

Figure 10: Autoencoder reconstruction examples.

When cutting out the segments from the whole profile and then resizing them to 128x128 pixels,
information about when the phenomenon takes place and for how long is lost. For this reason, the
representation is further augmented by concatenating this information to the autoencoded vector. The
procedure is depicted in Fig. 11.

Helgoland, May 4th 2014Ranges from 15 to 18 pm

May

dimensions = 12dimensions = 24

Daytime Encoding (Multi-hot): Month Encoding (One-hot):

15 to 18 pm

Slice Feature Example: Helgoland, May 4th 2014

Overall Features for Clustering:

Learned Slice Representation (Autoencoder)

Daytime Encoding

Month Encoding

dimensions = 128+24+12 = 164

Figure 11: Example of feature construction for clustering for a single slice (i.e., single data point).

A 24-dimensional vector represents the hours of the day the detected segment took place in. For
example, if the segment spans from 3 to 6 pm, the indices from 15 to 17 are set to 1, and all others
are set to 0 (multi-hot encoding, orange). The times are rounded, so if the segment would have ended
at 6:45 pm, index 18 would also be set to 1. The month is also encoded, using a 12-dimensional
one-hot encoded vector (green). The concatenation of all three vectors forms the representation used
for clustering in the next step.

B.1 Implementation

pytorch 1.10.1+cu113 and pytorch-lightning 1.5.7 were used for the neural network implemen-
tation. The experiments were carried out on an NVIDIA GeForce 3060 Laptop GPU.

C Clustering

In the final step, the obtained representations are clustered using k-means [7, 6]. Overall, the three
basic phenomena cloud, aerosol, and precipitation can occur in a segment. Thus, using the cardinality
of the powerset of these three phenomena, k = 23 = 8 clusters are chosen.
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C.1 Cluster visualization

Figure 12: Visualization of clusters and centroids using the first two principal components.

Fig. 12 shows a 2-d visualization of the received clusters using principal component analysis (PCA) [8].
The first two PCs are used to plot the clusters. Also shown are the centroids for each cluster, visualized
using the decoder part of the autoencoder. While the centroid images are kind of blurry, defined
clusters can be made out. For example present in the blue, purple, and red clusters are phenomena
that are at low altitudes. Wandering to the grey and pink clusters, the altitudes of the phenomena rise.
In the top right corner, profiles with high backscattering values seem to dominate.

Fig. 13 is the same PCA visualization of the clusters. But this time some example segments (not the
reconstructed centroids) and their position in the PC1-PC2 space are visualized, presenting a clearer
picture of what the clusters might represent. Their respective cluster assignment can be recognized
by the color of their borders.

The blue cluster groups very low-altitude phenomena like fog or precipitation, where barely anything
above a very low height is visible. Next to it are the red and purple clusters. Both represent
mid-altitude phenomena. The samples from the red cluster seem more cloudy and more prone to
precipitation while the purple ones show more general aerosol patterns and fewer clouds. Comparing
the positions of the pink and purple examples it is also apparent that the clusters do have a certain
degree of overlap. This is to be expected since often the phenomena do have a smooth transition
to each other or multiple phenomena do appear in the same window. The grey cluster appears to
group segments that display mainly a clear sky and sometimes some aerosol. Going through the
golden, green, and orange clusters, an interesting phenomenon can be observed: the amount of
“brownish” color in the profiles seems to increase. This is a noise effect. Especially during noontime,
the backscattering above clouds can be very high, resulting in the dark color. In future work, this
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Figure 13: Example segments for several coordinates in the PC1 and PC2 projection space and
interpretation thereof.

effect will be tried to be filtered out, since it bears no meaningful pattern and whether a phenomenon
is occurring during noon time is encoded in the daytime encoding already.

C.2 Analysis of time dependencies

Using the daytime and month encodings, an analysis of when certain phenomena occur can be
performed. Fig. 14 visualizes subsets of the data that occur in different ranges of the day. Again, the
“noon clouds” can be made out, looking at the (d) 9-12 am and (e) 12 am-3 pm plots. Apart from that,
the detected phenomena seem to be quite distributed and not much dependent on daytime.

Fig. 15 shows subsets of the data depending on the month they occur. Here, it can be seen that the
“noon clouds” are a phenomenon that takes place mainly in the summer. Furthermore, comparing for
example (a) January and (b) July it is visible that the left edge of the point cloud is more prominent in
winter than it is in summer. These are the clusters that represent phenomena like fog and precipitation.
This could perhaps be attributed to (i) fog appearing more often in winter than in summer and (ii) dry
periods during the summer (e.g., the summer in Germany in 2018).

Fig. 16 shows subsets of data that each range in different durations. In (a) it is apparent that the
“noon clouds” are often a comparatively short phenomenon, ranging from 0 to 3 hours. This may
be due to the segmentation algorithm being very sensitive to the brownish color and resulting in
over-segmentation. The mid-altitude clouds (center bottom) seem to be very prevalent in the 6 to 9
hours range (see (c)). All in all, the phenomena seem to be distributed widely among the clustering
space. One also has to keep in mind that the detected durations are heavily dependent on the used
segmentation algorithm and its parameters. Mid-altitude clouds being prevalent in the 6 to 9 hours
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range could also indicate that some under-segmentation is taking place and that the actual single
clouds are much smaller.

(a) 0-3 am (b) 3-6 am

(c) 6-9 am (d) 9-12 am

(c) 12 am-3 pm (d) 3-6 pm

(c) 6-9 pm (d) 9-12 pm

Figure 14: Position of phenomena depending on daytime they occur. x- and y-axes are PC1 and PC2.
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(a) January (b) February (c) March

(a) April (b) May (c) June

(a) July (b) August (c) September

(a) October (b) November (c) December

Figure 15: Position of phenomena depending on the month they occur. x- and y-axes are PC1 and
PC2.
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(a) 0-3 hours (b) 3-6 hours

(c) 6-9 hours (d) 9-12 hours

(c) 12-15 hours (d) 15-18 hours

(c) 18-21 hours (d) 21-14 hours

Figure 16: Position of phenomena depending on their duration. x- and y-axes are PC1 and PC2.
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C.3 Implementation

The scikit-learn 1.0.2 implementation of k-means was used:
sklearn.cluster.KMeans.
The following parameters were applied: n_clusters=8, random_state=0.

The scikit-learn 1.0.2 implementation of PCA was used:
sklearn.decomposition.PCA.
The standard configuration was used.
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