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Abstract

A major transformation to mitigate climate change implies a rapid decarbonisation
of the energy system and thus, increasing the use of renewable energy sources,
such as wind power. However, renewable resources are strongly dependent on local
and large-scale weather conditions, which might be influenced by climate change.
Weather-related risk assessments are essential for the energy sector, in particular,
for power system management decisions, for which forecasts of climatic conditions
from several weeks to months (i.e. sub-seasonal scales) are of key importance.
Here, we propose a data-driven approach to predict wind speed at longer lead-times
that can benefit the energy sector. The main goal of this study is to assess the
potential of machine learning algorithms to predict periods of low wind speed
conditions that have a strong impact on the energy sector.

1 Introduction

Tackling climate change impacts calls for rapid decarbonisation of the energy sector that requires
urgent action on a global scale. Europe has declared a strong commitment to take the lead in the
global energy transformation towards low-carbon power systems [9], on its way to achieving carbon
neutrality by 2050 [10]. This ambitious plan requires an increasing share of renewable energy
sources, such as wind and solar, that greatly depend on weather conditions [21, 3]. Due to the
strong dependence on climate variability, understanding and quantifying climatic conditions from
several weeks to months can improve the decision-making of the power systems planning, such as
turbine maintenance tasks. Hence, forecasts of sub-seasonal to seasonal (S2S; from weeks to months)
provide valuable information for a wide range of decision-makers [22, 23]. However, providing
skillful S2S forecasts, particularly within the context of extreme events, remains a challenge. A major
complexity arises because sources of predictability at this time range are not well represented by the
dynamical models. The rapid development of Artificial Intelligence (AI) techniques opens windows
of opportunity to potentially improve S2S predictions

The sensitivity of renewable dominant power systems to weather and climate variability has raised
concern about reliability and the potential for energy droughts, a new term that has recently emerged
in the energy context to define periods of low renewable energy production or/and high electricity
demand as a result of weather variability [18, 19, 14]. These events are primarily characterized by
calm winds and overcast conditions that can last days or even weeks [9], and they usually unfold
on the S2S timescales. Such energy droughts are receiving increasing attention in the scientific
community, but also in the energy sector, as they can severely impact the electricity grid’s stability
in renewable dominant power systems [18]. Particularly, wind power generation is highly sensitive
to variations in wind speed, as the power output from a wind turbine is proportional to the cube of
the wind speed, and a minimum wind speed is required for turbines to start generating electricity
[4]. Periods of low wind speed referred to as wind droughts are gaining attention not only in the

Tackling Climate Change with Machine Learning: workshop at NeurIPS 2022.



season = DJF season = JJA season = MAM season = SON

2

1

0

1

2

ws

Figure 1: Seasonal 10m wind anomalies in 2021, relative to the 1991–2020 reference period. Pro-
longed negative wind anomalies affected north-western and central Europe from spring to early
autumn.

scientific community but also in the energy sector. A recent episode through the summer months of
2021 occurred in Europe, where wind speeds were anomalously low across parts of north-western
and central Europe (Figure 1). These prolonged episodes of low wind speed lead to a considerable
decrease in wind power production in several European countries [20]. The need for predicting and
understanding the spatio-temporal variability of these events is a pressing issue for the energy sector.
Moreover, as wind droughts can occur at S2S timescales, providing skilful predictions of wind speed
offer an opportunity to the wind energy sector for maintenance tasks and optimally trade power on
the markets.

Recent studies have shown the great potential of using machine learning methods to improve the
skilfulness of S2S forecasts[11]. The increasing availability of meteorological records and high-
performance computing offers many windows of opportunity to exploit machine learning (ML)
approaches that can result in higher predictability. Previous works have shown that ML models can
outperform state-of-the-art dynamical models when predicting extreme events several months ahead
[8, 5]. In [8], the authors highlight that forecast centers should put more effort into hybrid techniques
by combining state-of-the-art dynamical models and machine learning methods to improve S2S
predictions. The dynamical models often struggle to predict extreme events, such as droughts, at S2S
time scales due to their limited skill in representing teleconnection patterns. Therefore, the potential
of ML and DL methods lies in their ability to learn complex patterns from large data sets, which
could help to enhance S2S predictions. Motivated by the successful application of ML to improve the
S2S forecast of climate variables shown in previous works, [24, 11, e.g.,], in this study we propose a
data-driven approach to improve the prediction of wind droughts of days-to-weeks in advance.

2 Data

The data used for this work belongs to the fifth generation in the European Centre for Medium-range
Weather Forecasts (ECMWF) series of reanalyses, which are produced using a single version of a
data assimilation system coupled with a forecast model constrained to follow observations over a long
period [12]. In particular, we used the extended release of ERA5 1 available for 1959 onwards [12]
reanalysis data. ERA5 provides data with high temporal (hourly) and spatial (0.25 °) resolutions. For
this work, the data has been aggregated into daily and weekly time scales. To reduce the computational
costs of training all the networks the spatial resolution of ERA5 data was degraded to 1.5 °.

Additionally, to further validate our models the S2S forecasts from the ECMWF models are collected
from the S2S database 2. The forecasts contain historical hindcast data for the past two decades and
are produced twice a week (further details can be found in [22]).

While ERA5 provides 100m wind components, which is closer to the turbine hub height, only 10m
wind components are available within the S2S dataset [22]. Thus, for consistency with the available
S2S products, 10m wind speed was derived from both, u zonal and v meridional wind components.

1https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels
2https://apps.ecmwf.int/datasets/data/s2s/
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Table 1: Meteorological variables used by the selected study.

Variable Long name Level
SLP Mean sea level pressure –
Z Geopotential height 200, 300, 500, 850, 1000
U/V Wind components 200, 300, 500, 850, 1000
T Temperature 200, 300, 500, 850, 1000
2mT Air surface temperature –

The weather variables used as input to ML models should be robust, i.e., not depend too much on the
climate model or the NWP model, for the ML model to be transferable to other contexts [1]. The
variables used as input as described in table 1. Previous studies pointed out that the forecasts skill
of teleconnection indices can lead to improved S2S predictions [13]. Thus, future analysis will test
whether the inclusion of climate indices lead to skilful forecasts.

3 Methods

Data-driven methods are trained on state variables that represent historical conditions, i.e., using
data from models or reanalysis, and learn to predict future states. Recent studies have used purely
data-driven approaches for weather prediction [7, 24, 16, 17, 6, 15]. Thus, our work builds on
previous related data-driven approaches, such as the WeatherBench work presented by [16], which
provides a new benchmark to test data-driven approaches to weather forecasting. However, given
that we aim at developing a modelling framework to predict wind droughts, i.e., episodes of low
wind speed conditions, we follow a different strategy than in previous works [16]. Our modelling
framework comprises models (see Figure 2).

Figure 2: Schematic illustration of the modelling framework consisting of two models: model A
used to create iterative forecasts that are subsequently used as input to predict low wind speed after
training model B.

Model A, which uses a total of 19 inputs as described in Table 1 trained for a short lead time (1-day).
After training model A, we created iterative forecasts up to 42 days lead time (6-weeks) for the
validation period, which is afterwards used to forecast low wind events at longer lead times. Previous
studies pointed out that iterative approaches seemed to perform better for lead times beyond 1 day
compared to direct predictions [16]. Model B is trained using the same inputs, excluding wind speed,
and one single output: low wind speed. After training model B, predictions of low wind events at
different lead times are created based on the forecasts obtained from model A for the corresponding
lead times.

Following [16], the persistence based on the premise “The weather tomorrow is the weather today"
and the climatology are used as benchmarks models, meaning that our proposed ML architectures to
be useful, should beat the climatology and the persistence forecast [16].
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4 Outlook and future work

The proposed work will assess the potential of machine learning models to improve the prediction of
low wind events, wind droughts, which have a strong impact on the energy sector. Thus, our study
will provide further insights to assess the feasibility of data-driven approaches for predicting weather
extreme events. We believe that this work will further motivate the use of ML for sub-seasonal
forecasts of meteorological variables that are essential for energy system planning.

Future work will consist of exhaustive testing of additional models that have recently emerged in the
literature [15, 2] to improve the predictions of model A to provide skilful forecasts of wind droughts
at longer lead time.
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