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Abstract

Methane (CH4) is the chief contributor to global climate change and its mitigation
is targeted by the EU, US and jurisdictions worldwide [2]. Recent studies have
shown that imagery from the multi-spectral instrument on Sentinel-2 satellites
is capable of detecting and estimating large methane emissions. However, most
of the current methods rely on temporal relations between a ratio of shortwave-
infrared spectra and assume relatively constant ground conditions, and availability
of ground information on when there was no methane emission on site. To address
such limitations we propose a guided query-based transformer neural network
architecture, that will detect and quantify methane emissions without dependence
on temporal information. The guided query aspect of our architecture is driven by a
Sentinel Enhanced Matched Filter (SEMF ) approach, also discussed in this paper.
Our network uses all 12 spectral channels of Sentinel-2 imagery to estimate ground
terrain and detect methane emissions. No dependence on temporal data makes it
more robust to changing ground and terrain conditions and more computationally
efficient as it reduces the need to process historical time-series imagery to compute
a single date emissions analysis.

1 Introduction
Methane (CH4) is estimated to contribute 20% of global warming induced by greenhouse gasses
[14] with a Global Warming Potential (GWP) 86 times higher than carbon dioxide (CO2) in a 20 year
period [18]. The longstanding greenhouse gas has a mean atmospheric residence of 7.9 years [17]
and its presence in the atmosphere has been increasing since the industrial revolution [1]. The annual
growth rate of CH4 plateaued between 1999 and 2006, but started increasing again in 2007 [20].
Causes of this variable growth rate are highly debated, attributing the sporadic behavior to the natural
gas industry, emission from wetlands, and changes in the methane lifetime [19, 26, 27, 25, 33]. The
increases in atmospheric CH4 have prompted governments to enact regulations and action plans such
as the ‘U.S. Methane Emissions Reduction Action Plan’ in 2021 and the ‘Global Methane Pledge
Energy Pathway’ in 2022 to curb CH4 emission [2, 21]. Accurately identifying and tracking the
contribution of various sources to the methane budget will be paramount to enforce these regulations.

Given the strong potential of satellite-based instruments to deliver high-frequency data on global
scales and even remote and hard-to-access regions, recent research has depicted the potentials of
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Figure 1: Qualitative visualization of SEMF intermediate steps and final estimation.

deploying methane emissions analysis on public, global-mapping, multi-spectral instruments like
the ESA Sentinel-2 mission [34, 3, 8, 22, 3]. Most previous Sentinel-2-based methane analysis
approaches use similar approaches to the methane column retrieval method in [34], building large
parts of signal exploitation on an analysis of temporal deviation between times of excessive methane
concentrations in the atmosphere and times without, merged with ratios between methane-sensitive
and less-methane-sensitive bands. While this method, and variations of it [5] have revolutionized
capabilities of detecting methane emissions with public satellite data, the strong dependency on
time-series analysis of spectral reflectance data expose the approach to risky assumptions on (a)
knowing when emissions did not exist and (b) temporal albedo stability of the background - that the
albedo of a certain area stays constant over time. In return, these assumptions lead to high amounts
of false positives, especially in areas with heterogeneous, temporally deviating land cover [34, 36].

To overcome shortcomings of time-series based methane analytics methods, we propose a deeper
exploitation of signals from other non-methane-sensitive spectral bands of Sentinel-2 multi-spectral
data. Given both, the recent successes of enhance match filters for methane signal processing
[31, 6, 16, 32] and progresses in using Machine Learning models for methane emissions analysis [16],
we hereby propose a 2-step methodology to generate (1) a novel Sentinel Enhanced Match Filter
(SEMF) algorithm and (2) an integration of SEMF into a Transformer-based Convolutional Neural
Network architecture [4, 10] as shown in Figure 2. Using the full spectral response captured by
Sentinel-2 instruments, we expect the SEMF to support Signal to Noise separation by classifying
confusing and hard-to-detect land cover types, artifacts and temporal deviations, such as water
bodies, dark green vegetation, calcite, and white painted roofs which are never considered in current
band/channel ratio method. Using these classes, SEMF computes statistical properties for each class
separately for the whitening of background pixels.

2 Approach
The proposed approach is a transformer [35] based neural network architecture with a SEMF
guidance. The input to the network is B1-B12 bands from Sentinel-2 Level 1C data [23]. The output
is a segmentation mask that is used with a radiative transfer model for methane emissions analysis.
The overall architecture (Figure 2) presents 2 feature extraction blocks (ResNet [9]) as shown in
Figure 2, that will extract useful features from both, an input RGB image and a stack of B1-B12 bands
from Sentinel-2 Level 1C data [23]. While the singled-out RGB image will provide information
about land cover (e.g. Urban areas), the full B1-B12 stack provides additional land cover feature
extraction (e.g. water bodies) while also capturing information about methane presence. Extracted
features will be projected in a common subspace via a MLP [29] and passed on to the transformer
encoder network along with positional information of each pixel in the image as shown in Figure 2.
The output attention map [35] from the transformer encoder along with project features are passed
onto the transformer decoder. The decoder network will use our SEMF to generate a query of the
potential methane emission sites. The SEMF is discussed in more detail Section 2.2.

2.1 Dataset
We will be training and testing the proposed network on a mix of large-eddy based methane plume
simulation data (synthetic data) [24] and single-blind release, human-labelled data [28]. The synthetic
data includes images that contain simulated methane emissions on different types of background
terrain. Each image is be a 10km× 10km tile with 12 channels at different spatial resolutions per
pixel. Next to the simulation data, we propose model validation to happen on manually selected
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Figure 2: Our proposed transformer based Neural Network architecture, SEMF is one of the most
critical block of it presented in current proposal

emissions data from controlled ground releases [28]. The labels used in training corresponding to
each multi-spectral image will be a binary segmentation mask (methane, no-methane) with the same
spatial dimension as the input image. Along with that, we have a concentration mask, representing
the concentration of methane per pixel in the mol/m2.

2.2 Sentinel Enhanced Matched Filter (SEMF)
SEMF is an essential component of our proposed architecture. The SEMF model is used to
generate refined queries for our transformer decoder network, leading to quicker convergence of our
model. SEMF is inspired by a deterministic, linear match-filtering approach of finding CH4 [16, 31].
The linear approach is taking a n-dimensional (number of spectral channels) feature α, and apply
as a dot product to each pixel (n-dimension) in the multi-spectral image to generate a scalar output
per pixel. The α vector is "matched filter" [16, 31], making the process of finding the best-fitting α
critical for signature exploitation in the ground terrain distribution at hand.

In ideal instances when there is no background (i.e. all white ground terrain) and just CH4 gas
present, the α is just the scaled version of the CH4 signature (t). However in real-world scenarios
with spatially varying ground terrain this is not the case. For example, water has strong absorption of
solar radiations, therefore the methane on such backgrounds has very weak visibility [11]. On the
other hand, bare soil, rocks, etc have lower absorption, and the methane present in such background
has strong visibility. An understanding of ground terrain and underlying albedo properties (especially
in the methane sensitive spectral ranges) is critical to improve Signal to Noise ratios in our Sentinel-2
data. To account for spatial albedo differences in real-world scenes, we propose to deploy a land
cover classification as shown in Figure 1 and use that land cover information to build our SEMF
(See Appendix Sec 4.2). The final SEMF used in our architecture is:

α̂k(ri) =
(ri − µk)

T Cov−1
k ϵt√

ϵtT Cov−1
k ϵt

∀ i ∈ k, (1)

SEMF (ri) =
(ri − µ)T Cov−1t√

ϵtT Cov−1t
(2)

where α̂k(ri) is the estimated methane column enhancement, ri is the captured radiance at ith pixel
in the multispectral image, µk & Cov−1 are the mean and the inverse of covariance matrix for kth
class and ϵ represent the chemical properties of CH4. SEMF is represented by a green block in
Figure 2. An example of α̂k(ri) estimations is shown in column-4 of Figure 1. Our approach is
simple and effective, it can be implemented with basic python pseudo-code as shown in appendix
algorithm 1. Details about SEMF can be found in the Appendix at the end of the paper.

3 Future work
While we have developed and tested the SEMF of CH4 estimations only on a few samples where
some good ground data exists, there is much work to be done to (a) implement it in the proposed
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transformer-based neural network architecture, (b) test the whole transformer model with glob-
ally simulation-based and release-based emissions data (c) evaluate performance of the model by
comparing it with the time-series-based approaches in recent literature.
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4 Appendix

4.1 Background & Motivation:

Although important for regulation enforcement,successfully detecting and delineating CH4 plumes
on a regular basis poses a great challenge to researchers and stakeholders given its amorphous
characteristics. To tackle the overall lack of reliable and actionable methane emissions information
on the vast scales global natural and anthropogenic methane-emitters (e.g. oil & gas sites, landfills,
wetlands), there are increasing efforts by the research and industry community to detect and quantify
methane plumes with airborne [13] and satellite-based instruments [34, 12, 3, 22] . Given the strong
potential of satellite-based instruments to deliver high-frequency data on global scales and even
remote and hard-to-access regions, recent research has depicted the potentials of deploying methane
emissions analysis on public, global-mapping, multi-spectral instruments like the ESA Sentinel-2
mission [34, 3, 8, 22, 3]. With two polar-orbiting, sun-synchronous satellites, the Multispectral
Instrument (MSI) onboard the Sentinel-2 satellites measures the reflected radiance from Earth in
multiple bands covering various areas of the electromagnetic spectrum [23]. Among these bands,
band 11 (∼ 1500nm− 1660nm) and band 12 (∼ 2090nm− 2290nm) are able to capture methane’s
SWIR absorption features at a spatial resolution of 20m2, leading to a large breadth of work and
studies on using Sentinel-2 data to detect and quantify methane emissions [34, 36, 12, 5].

4.2 Enhanced Matched Filter:

The passive multispectral image is H ×W × n ∈ R where H and W are height and width of the
image respectively and n (n ∼ 10) spectral channels. In this data, we are looking for a very weak
signature (CH4) of interest hidden in background (variable ground terrain). The most common linear
approach for finding CH4 is taking a n-dimensional (number of spectral channels) feature α, and
apply as a dot product to each pixel (n-dimension) in the hyperspectral image to generate a scalar

6



output per pixel. This operation is supposed to remove the ground terrain and amplifies CH4 signature.
The α vector is "matched filter" [16, 31]. Therefore computing right α is very critical for finding
the signature of interest. It is dependent on desired signature and on the distribution of the ground
terrain. To model α, let ri ∈ Rn be a ith radiance vector from the hyperspectral image representing
the ground terrain pixel and sensor noise, and t be the CH4 signature. This is modeled as the additive
perturbation. The spectrum is represented by ξ(xB), when the gas is present. The linear matched
filter is modeled as additive perturbation:

ξ(ri) = ri + ϵt, (3)

Here ξ(ri) is the spectrum when CH4 is present and ϵ represents the chemical properties of the gas.
The CH4 signature t represents the change in radiance units of the background caused by adding
a unit mixing ratio length of CH4 absorption [7, 16]. In the ideal scenario where only CH4 gas is
present in signal (i.e. all white background), the matched filter output is αT ϵt. In case there is no gas
and just ground terrain and sensor noise, the matched filter output is αT ri. The variance (V ar) of
αT ri for the latter is represented as :

V ar(αT ri) = ⟨(αT ri − αTµ)2⟩ = αT Covα, (4)

Here Cov and µ are covariance and mean respectively. Inspired from [16, 7] we define the Methane-
to-Ground terrain Ratio (MGR) as

MGR =
|αT ϵt|2

αT Covα
, (5)

We can see that the magnitude of α does not affect MGR. According to [30, 7, 16], the MGR can be
maximized subject to constraints(zero mean and αT Kα constraint to 1). The matched filter α is then
represented by:

α =
Cov−1ϵt√
ϵtT Cov−1ϵt

, (6)

where t is the CH4 signature compute from HITRAN database [15], ϵ represents the chemical
properties of the gas, and Cov is covariance of the ground terrain. In ideal instances when there is
no background (i.e. all white background) and just CH4 gas present. The matched filter is directly
proportional to t. In simple terms, it is just the target signature (t) itself scaled so that the filtered
output has variance of one. The methane enhancement per column can be computed as follows:

α̂(ri) =
(ri − µ)T Cov−1ϵt√

ϵtT Cov−1ϵt
, (7)

where t is the CH4 signature compute from HITRAN database [15], ϵ represents the chemical
properties of the gas, and Cov is covariance of the ground terrain. α̂(ri) is the column enhancement
of methane per pixel. The covariance matrix (Cov) used is not known as prior and is estimated from
data. It is computed as outer product of the mean subtracted radiance over all the pixels. In other
words, The standard matched filter from equation 7 computes the covariance (Cov) of ground terrain
with an underlying assumption that in all elements have similar absorption pattern. The standard
matched filter from equation 7 computes the covariance (Cov) of ground terrain with an underlying
assumption that in all elements have similar absorption pattern. But in realistic scenarios, the type
of terrain changes frequently, there is water bodies, bare soil, vegetation, dense vegetation, building
structures in cities, roads etc in a single image. For example, water have a strong absorption of solar
radiations, therefore the methane on such backgrounds have a very weak visibility. On the other hand,
bare soil, rocks, etc have lower absorption, the methane present on such background have strong
visibility. A simple and single approximation of the covariance (Cov) of ground distribution can not
provide the right and effective estimate of methane enhancement. To tackle this limitation, we do
land cover segmentation and classification. Cov per class: In practice we have 20 classes, each with
a segmentation mask. We merge two or more adjacent classes into one if the number of pixels in that
class is less 20000. The Number of pixels in each class is kept higher to ensure that while computing
the covariance (Cov) matrix, the methane signal does not have any or have negligible effect. It is
okay to merge adjacent classes into one because they have almost similar radiance/reflectance, for
example, light vegetation and normal vegetation have similar reflectance, etc. The covariance Covk

of kth class is computed as:

Covk =
1

N

i=j∑
i=1

(ri − µk)(ri − µk)
T ∀ j ∈ k, (8)

7



where N is the number of pixels (> 10000) in kth class and µk is the mean of kth class. For each
class we compute the mean µk, covariance matrix Covk and matched filter αk. While iterating
through each pixel of hyperspectral image, we check to which class k the pixel ri belongs to and use
those pre-computed values. The final Sentinel Enhanced Matched Filter is shown in algorithm 1

α̂k(ri) =
(ri − µk)

T Cov−1
k ϵt√

ϵtT Cov−1
k ϵt

∀ i ∈ k, (9)

Data: Sentinel-2 12 channel dataset
Result: CH4 concentration map
initialization;
for datum in DATASET do

1. create memory map datum;
2. seg_mask = compute segmentation mask;
for mask in seg_mask do

data.append(datum[mask])
if (len(data) < 100000): continue
Cov, µ = compute_stats(data);

end
3. for ri in data do

k = seg_mask[i];

α̂k(ri) =
(ri−µk)

T Cov−1
k

ϵt√
ϵtT Cov−1

k
ϵt

end
α̂k(ri) ∀ classes and i ∈ datum

end
Algorithm 1: SEMF

where Cov−1 is the inverse of covariance matrix.
Our approach is simple and effective, it can be
implemented with basic python pseudo code as
shown in algorithm 1.
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