

MONASH
University

MONASH
ENERGY
INSTITUTE

Synthesis of Realistic Load Data: Adversarial Networks for Learning and Generating Residential Load Patterns

Xinyu Liang, Hao Wang

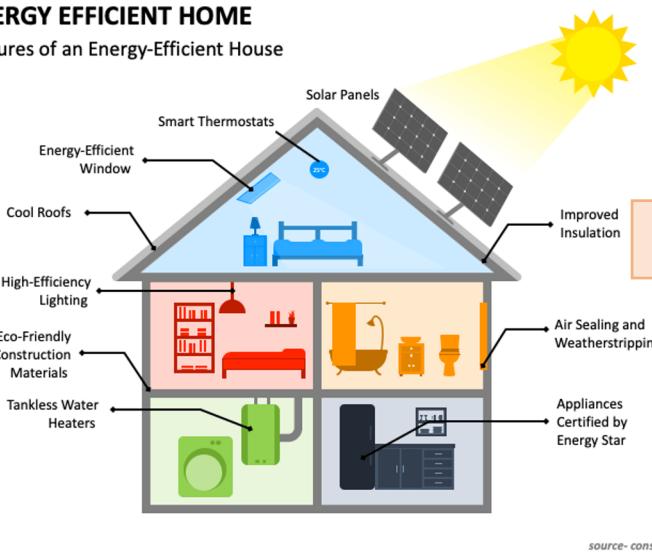
Department of Data Science and AI
Faculty of IT
Monash University
Melbourne, Australia

The important role of residential consumers in combating climate change

Residential energy use accounts for roughly 20% of greenhouse gas (GHG) emissions in the U.S

ENERGY EFFICIENT HOME

Features of an Energy-Efficient House



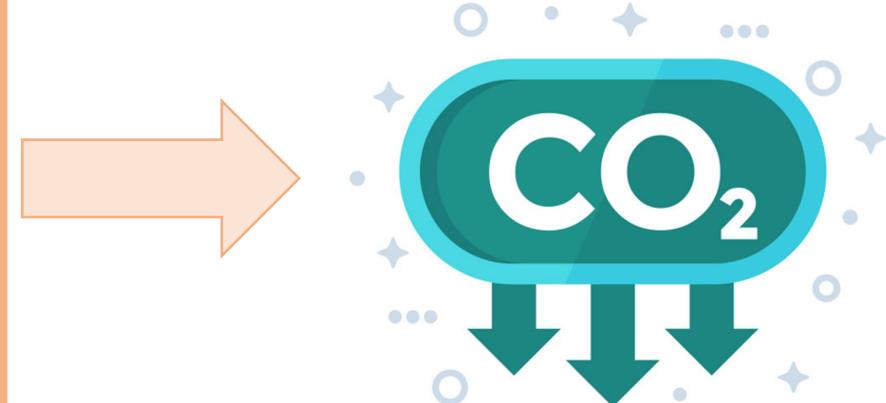
Understanding of residential electricity consumption

Responsible Energy Consumption

Energy saving

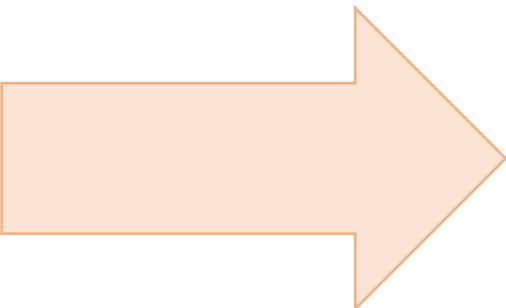
Energy efficiency upgrades

Increase renewable utilization
via demand response



Reduce CO₂ emissions

Importance of Residential Load Data



Load Profiling

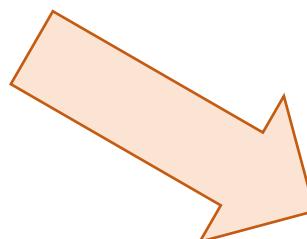
Load Forecasting

Demand Response

• • •

Barriers to Accessing High-Quality Residential Load Data

Time consuming and cost intensive
load data collection process



Privacy concerns for load data sharing

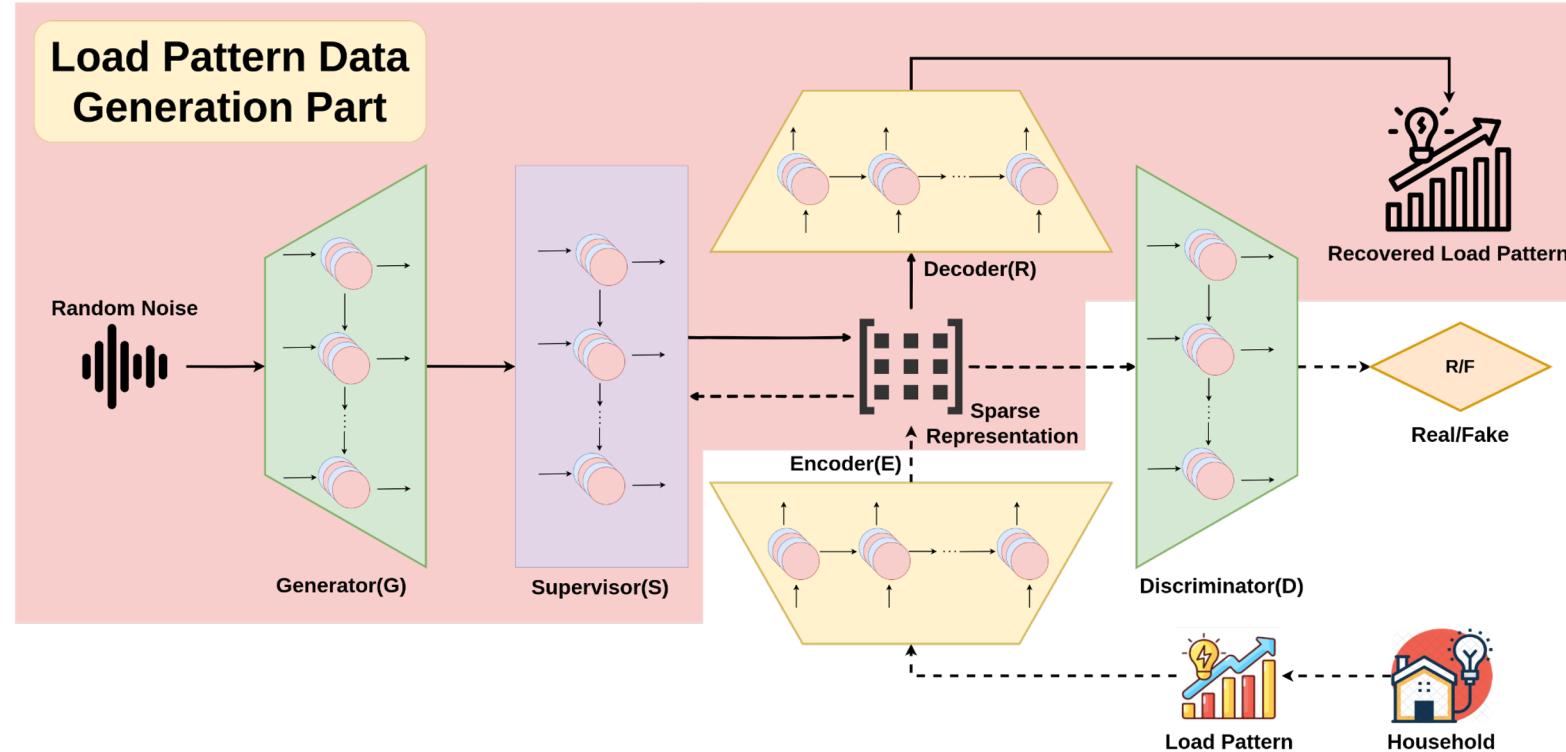
Lack of residential sector load dataset

Generating Residential Load Data - Related Works

Top-down Approach	Bottom-up Approach
Pros: Easy to model and scale with low computational cost	Pros: Able to generate diverse synthetic data with no information loss
Cons: Suffer from low diversity problems	Cons: Hard to scale up and be widely applied
Existing Works: <ul data-bbox="148 836 1198 1261" style="list-style-type: none"> • J. Dickert et al., IEEE Trondheim PowerTech 2011. • R. Subbiah et al., IEEE ISGT 2013. • T. Ding et al., 2016 IEEE Transactions on Smart Grid. • A. Marszal-Pomianowska et al., Energy 2016. • C. Klemenjak, et al. Scientific data 2020. 	Existing Works: <ul data-bbox="1300 836 2401 1196" style="list-style-type: none"> • G. Valverde et al., IET generation, transmission & distribution 2012. • W. Labeeuw et al., IEEE Transactions on Industrial Informatics 2013. • T. Zufferey et al., IEEE PSCC 2018. • Y. Gu et al., IEEE ISGT 2019.

RLPGen: Residential Load Pattern Generation Method

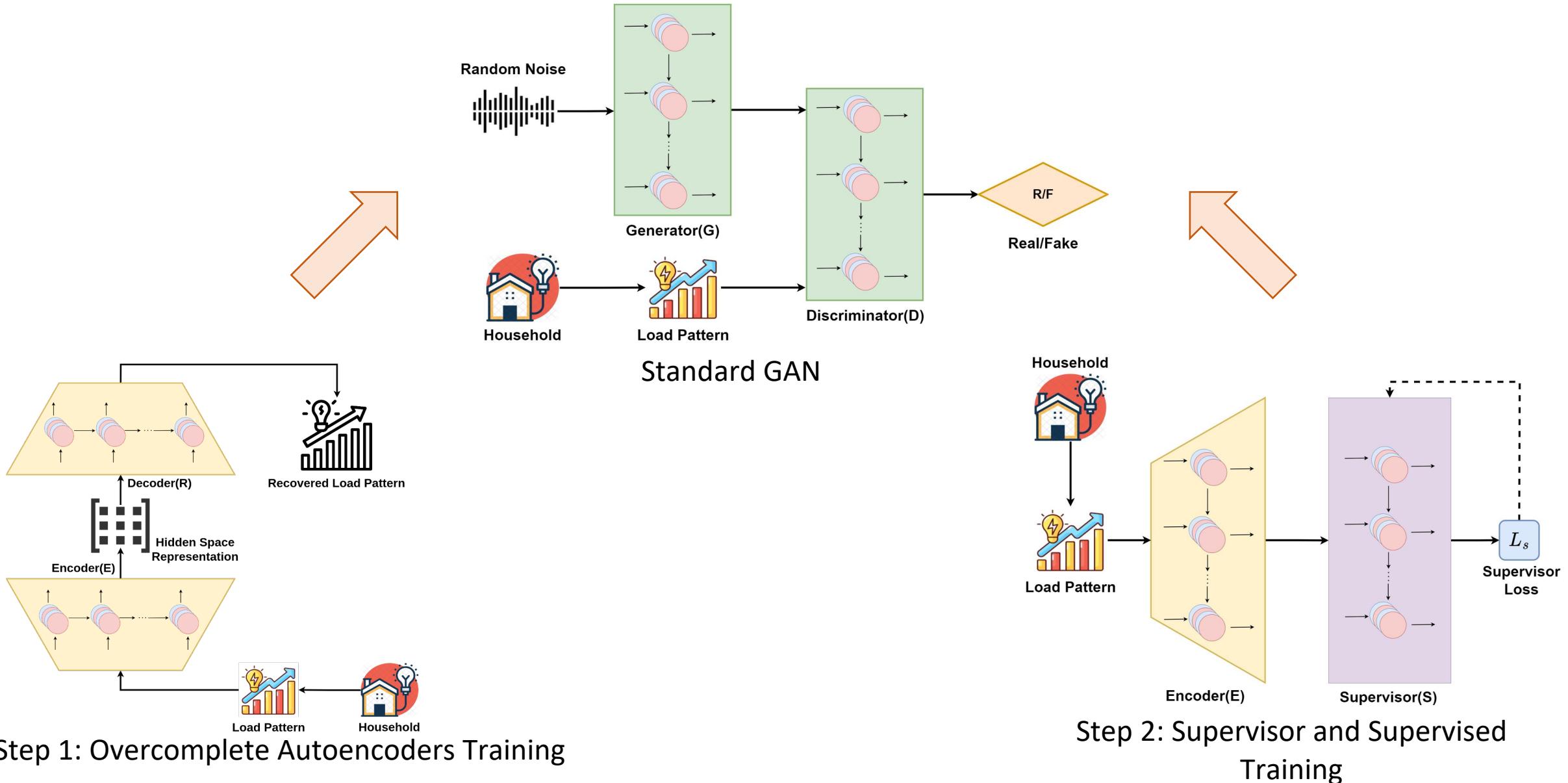
LSTM-based GAN model utilizing weakly-supervised training method



Model weight selection method for generator

$$D_{Fr\acute{e}chet}^2(X_{real}, X_{fake}) = \left| \mu_{X_{real}} - \mu_{X_{fake}} \right|^2 + \text{tr} \left(\Sigma_{X_{real}} + \Sigma_{X_{fake}} - 2 \left(\Sigma_{X_{real}} \Sigma_{X_{fake}} \right)^{\frac{1}{2}} \right)$$

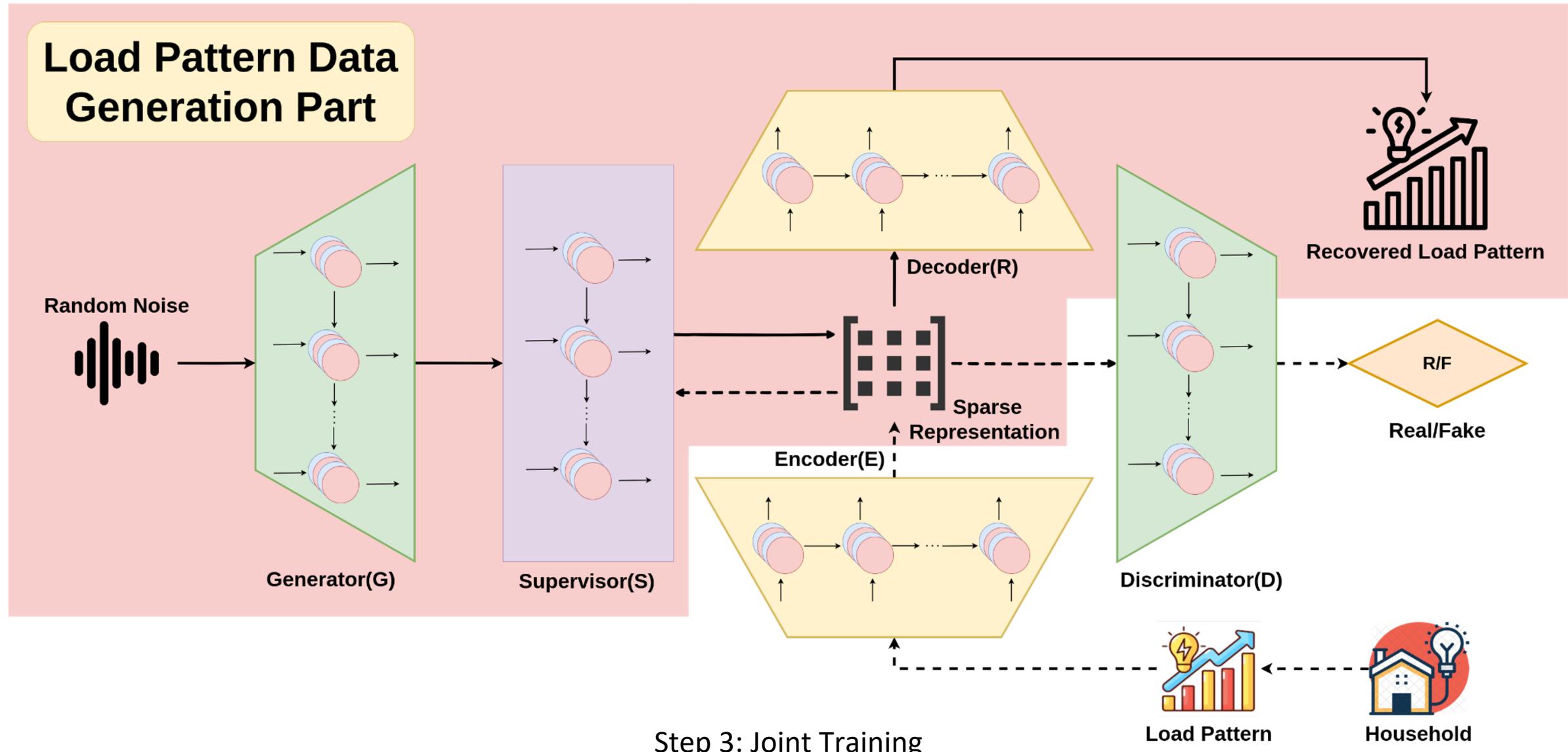
Model Structure With Weakly-Supervised Training



Step 1: Overcomplete Autoencoders Training

Step 2: Supervisor and Supervised Training

Model Structure With Weakly-Supervised Training



Weight Selection Method

$D_{Fr\acute{e}chet}^2$: Fréchet distance between two multivariate Gaussian distributions

$$D_{Fr\acute{e}chet}^2(X_{real}, X_{fake}) = \left| \mu_{X_{real}} - \mu_{X_{fake}} \right|^2 + \text{tr} \left(\Sigma_{X_{real}} + \Sigma_{X_{fake}} - 2 \left(\Sigma_{X_{real}} \Sigma_{X_{fake}} \right)^{\frac{1}{2}} \right)$$

X_{real} : load pattern samples from original dataset

X_{fake} : load pattern samples from generated dataset

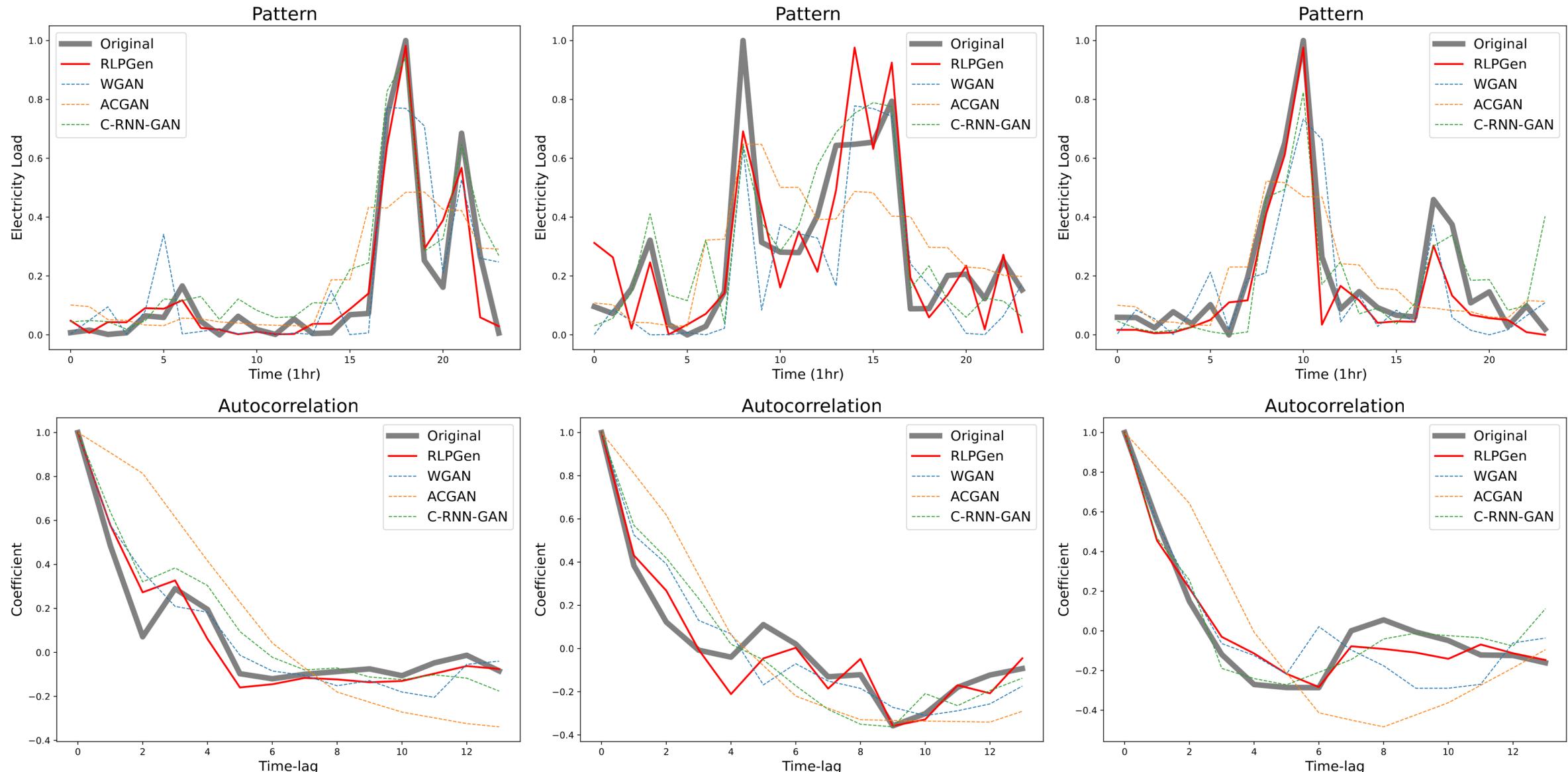
$\mu_{X_{real}}$: mean of load pattern samples from original dataset

$\mu_{X_{fake}}$: mean of load pattern samples from generated dataset

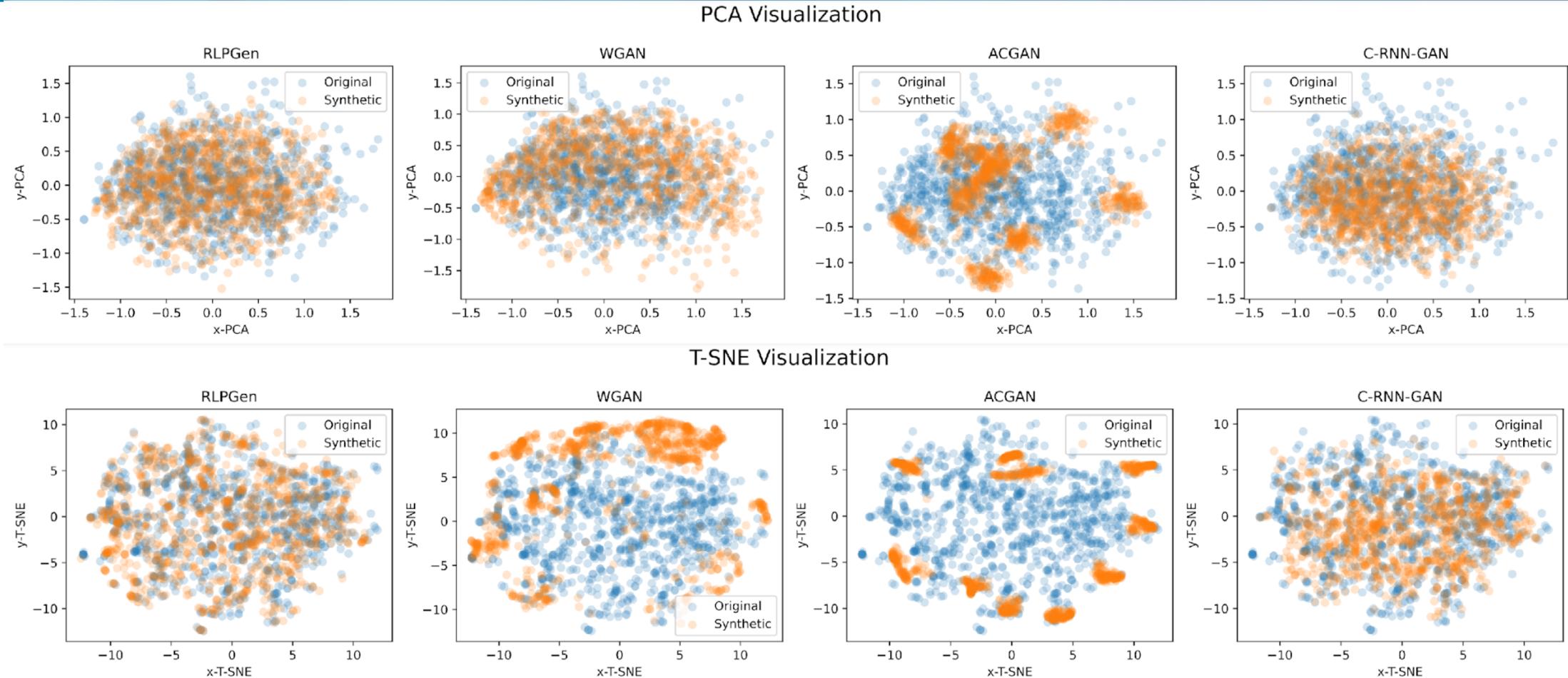
$\Sigma_{X_{real}}$: covariance matrices of load pattern samples from original dataset

$\Sigma_{X_{fake}}$: covariance matrices of load pattern samples from generated dataset

Results



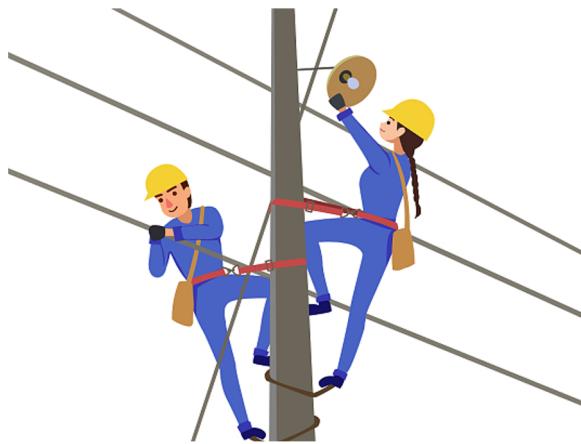
Results



Distance Measuremen	RLPGen	ACGAN	WGAN	C-RNN-GAN
J-S Distance	0.00770	0.18363	0.05576	0.04277
RMSE	0.03522	0.56700	0.26113	0.19247

Pathway to Impact

Grid Planning



Grid Construction

Demand Response

Utilization of Renewable Energy

Response consumption and production

Contact Us

Xinyu Liang

E-mail: adamliang42@gmail.com

Hao Wang

E-mail: hao.wang2@monash.edu

<https://research.monash.edu/en/persons/hao-wang>

