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Barriers to Accessing High-Quality Residential Load Data University
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Generating Residential Load Data - Related Works 4 Universtty

Top-down Approach Bottom-up Approach

Pros: Easy to model and scale with low Pros: Able to generate diverse synthetic data with
computational cost no information loss
Cons: Suffer from low diversity problems Cons: Hard to scale up and be widely applied
Existing Works: Existing Works:
* J. Dickert et al., IEEE Trondheim * G. Valverde et al,, IET generation, transmission &
PowerTech 2011. distribution 2012.
* R. Subbiah et al., IEEE ISGT 2013. * W. Labeeuw et al., IEEE Transactions on
* T. Ding et al., 2016 IEEE Transactions on Smart Industrial Informatics 2013.
Grid. e T. Zufferey et al., IEEE PSCC 2018.
* A. Marszal-Pomianowska et al., Energy 2016. *Y.Guetal., I[EEE ISGT 2019.

* C. Klemenjak, et al. Scientific data 2020.
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RLPGen: Residential Load Pattern Generation Method 7 University

[ LSTM-based GAN model utilizing weakly-supervised training method ]
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Model Structure With Weakly-Supervised Training
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Weight Selection Method University

Dz...net: Fréchet distance between two multivariate Gaussian
distributions

o i
+tir 2:Xreal + 2:Xfake -2 (zxrealzxfake)

2 —
DFréchet(Xreal:Xfake) - ‘#Xreal - H'Xfake

X,eq1 - l0ad pattern samples from original dataset
Xrake - l0ad pattern samples from generated dataset

Kx.,,,- Mean of load pattern samples from original dataset

X f - €N of load pattern samples from generated dataset

Zx, .., COvariance matrices of load pattern samples from original dataset
Iy fake- covariance matrices of load pattern samples from generated dataset
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Distance Measuremen

RLPGen ACGAN WGAN C-RNN-GAN

J-S Distance
RMSE
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