

Climate Change AI

Generative Modeling of High-resolution Global Precipitation Forecasts

James Duncan, Shashank Subramanian, Peter Harrington
Paper: tinyurl.com/precip-gan

Precipitation forecasting

- ◆ Traditional numerical weather models suffer from:
 - **High computational cost**: Estimated 596 MWh/SY for a global 1km-scale weather model [[T. Kurth, et al. 2022](#)]
 - **Inaccurate precipitation extremes**: The “drizzling bias” [[D. Chen, et al. 2021](#)]
- ◆ Deep learning-based models have become increasingly skilled
 - Competitive or **superior accuracy** [[J. Pathak, et al. 2022](#)]
 - Multiple orders-of-magnitude **reduction in computational cost** [[T. Kurth, et al. 2022](#)], both in time and energy
⇒ large **ensemble** predictions + forecast **inference**
- ◆ Yet DL-based precipitation forecasting is **still lacking** in:
 - 1) fine-scale details
 - 2) accurate prediction of extremes

Generative modeling of precipitation

Generative adversarial networks (GANs) have recently shown promise to produce **realistic high-resolution local precipitation fields** [[J. Leinonen, et al. 2020](#); [S. Ravuri, et al. 2021](#); [I. Price & S. Rasp, 2022](#)].

Opportunities:

- Ability to generate **realistic-looking fine-scale details** on global scales.
- Better able to **handle the high sparsity and heterogeneity** that comes with precipitation data.

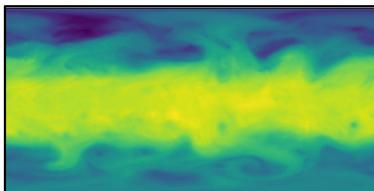
Challenges:

- While realistic-looking, GAN **“hallucination”** may lead to poorly-calibrated predictions.
- GANs are notorious for **distributional collapse**, leading to insufficient exploration of climate variability.

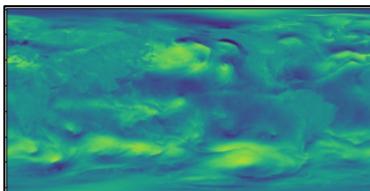
Inputs

ERA5: Fifth generation ECMWF global reanalysis dataset

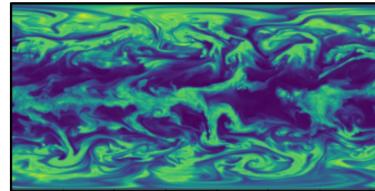
- ◆ 21 “scaffolding” variables, various vertical levels
- ◆ 0.25° lat x lon = 720 px by 1440 px



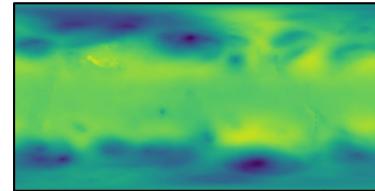
Temperature



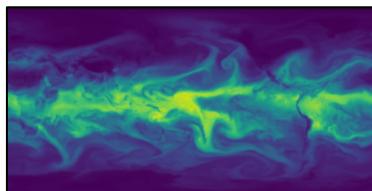
Wind velocities



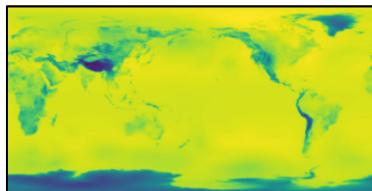
Relative humidity



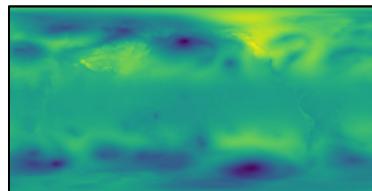
Geopotential



Total column water vapor



Surface pressure



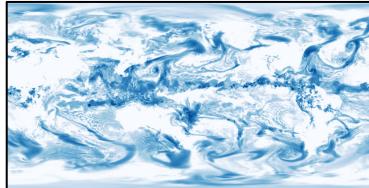
Mean sea-level pressure

- ◆ **Training:** 1979 – 2015 | **Validation:** 2016 – 2017 | **Testing:** 2018
- ◆ $\Delta t = 6$ hrs

Our GAN Precipitation Framework

We employ a recent **image-to-image translation** network [L. Jiang, et al. 2020] to predict global precipitation fields at 0.25° resolution.

Target:

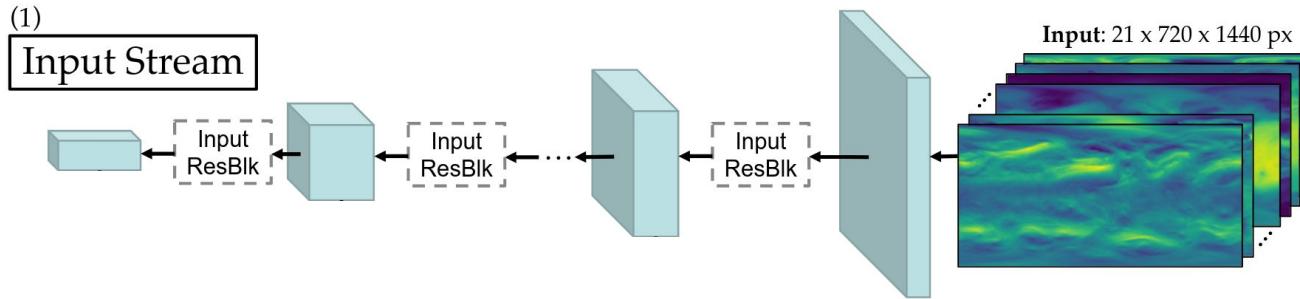


Total precipitation (6 hour accumulated)

The network has 4 components:

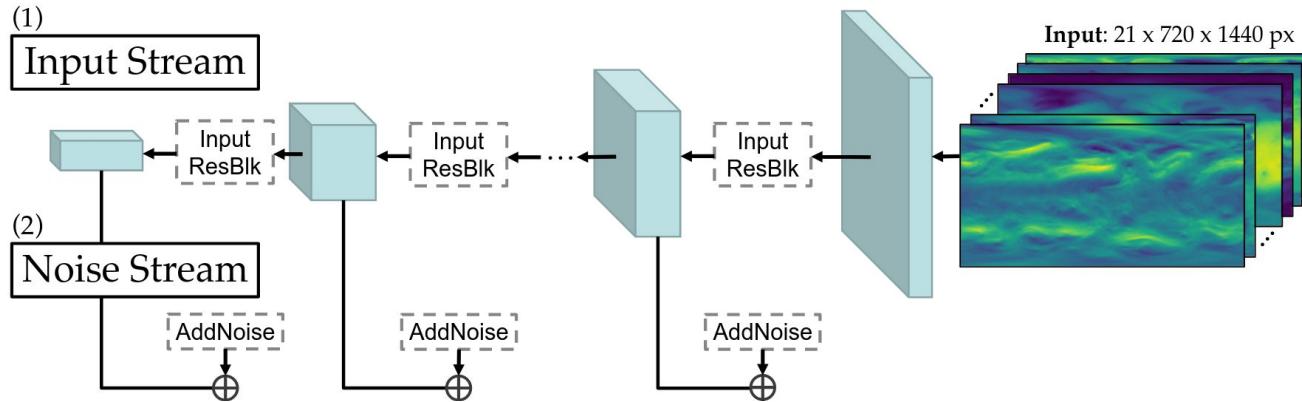
- 1) Input Stream
- 2) Noise Stream
- 3) Generator
- 4) Discriminator

Input Stream



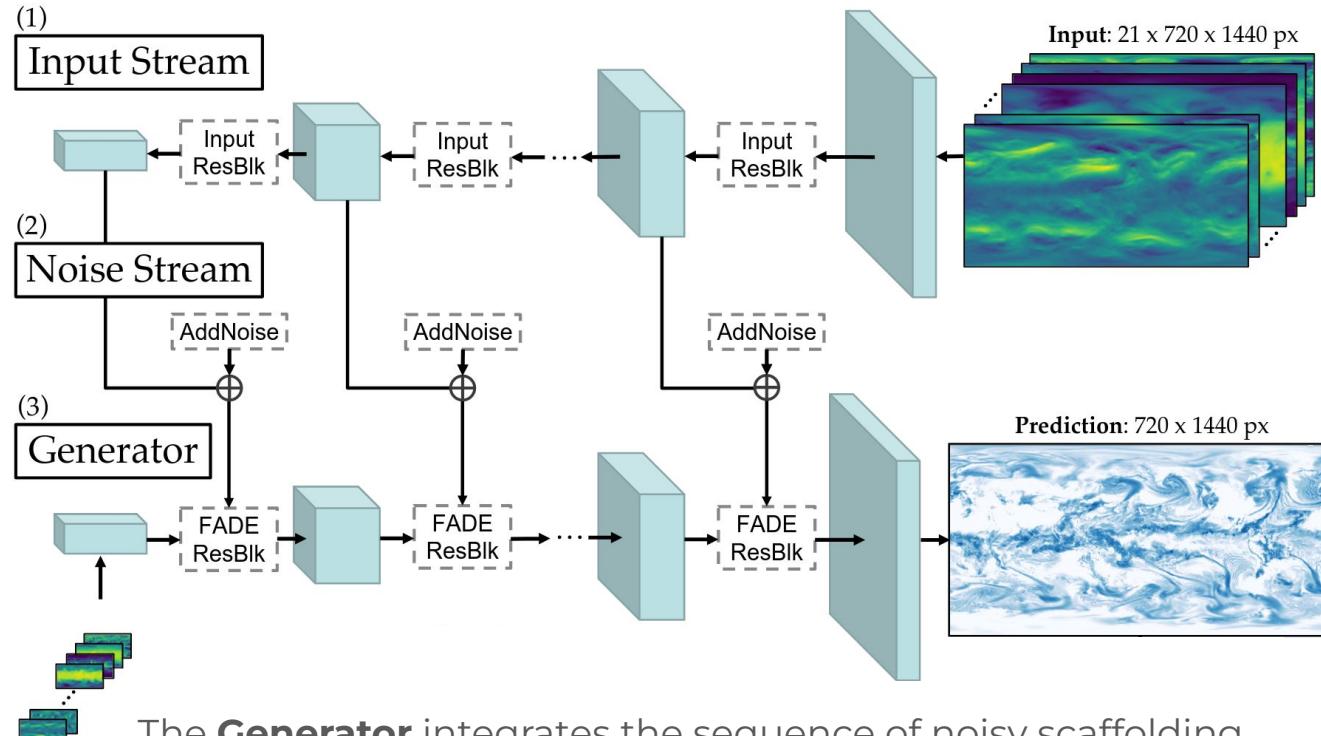
The **Input Stream** provides multi-scale representations of the 21 scaffolding variables.

Noise Stream



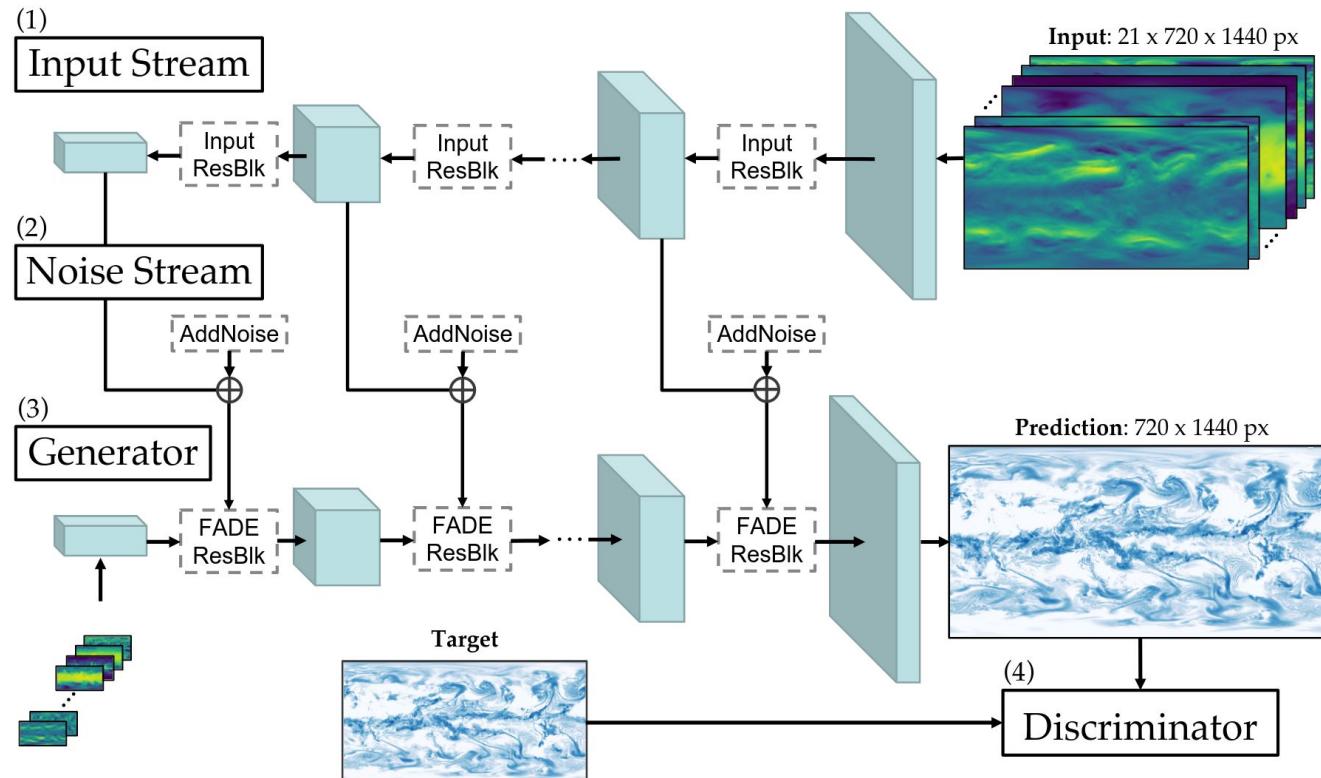
The **Noise Stream** helps prevent distributional collapse by injecting randomness into the scaffolding representations.

Generator

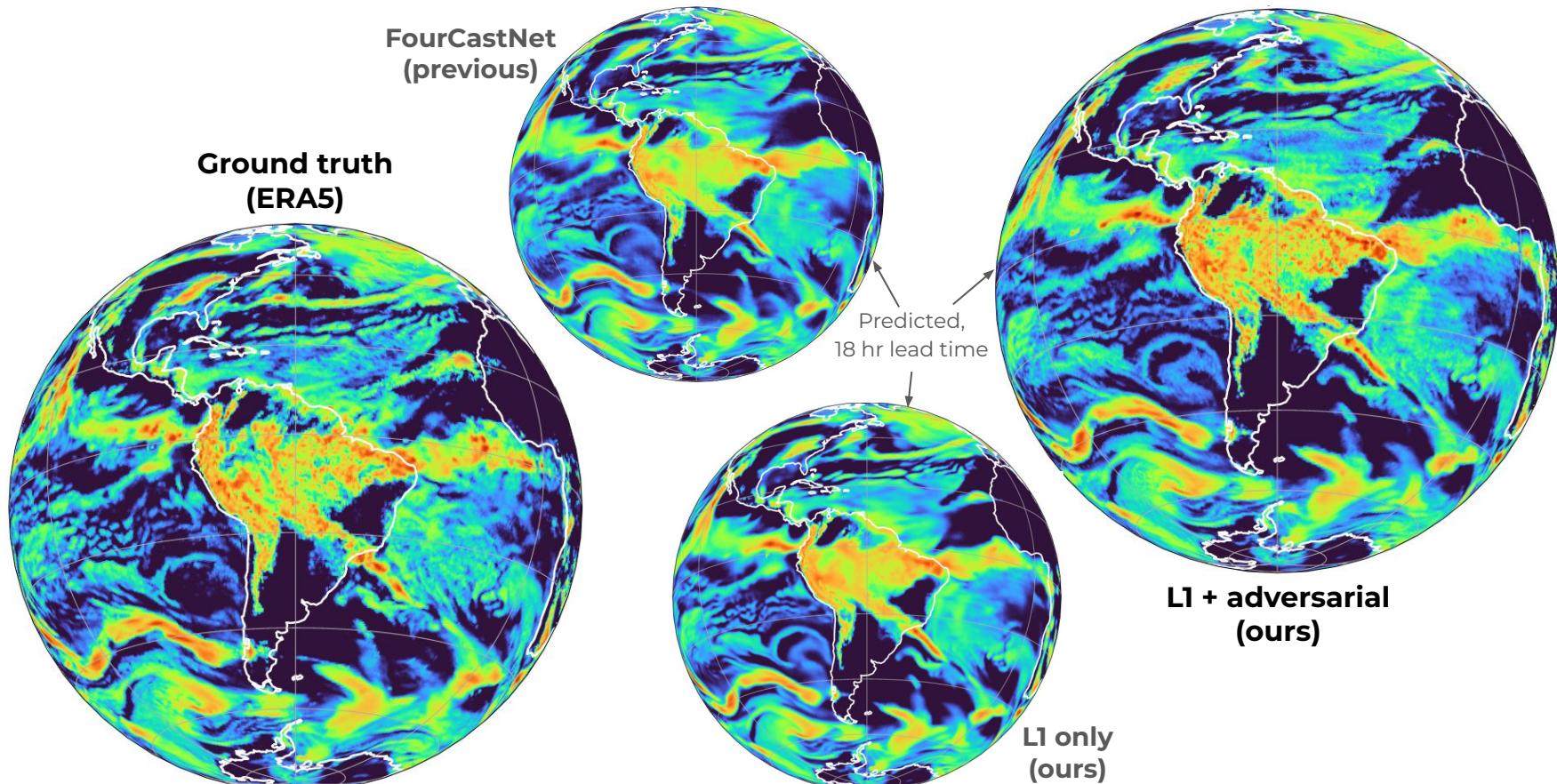


The **Generator** integrates the sequence of noisy scaffolding variable representations, working from coarse to fine scales.

Discriminator

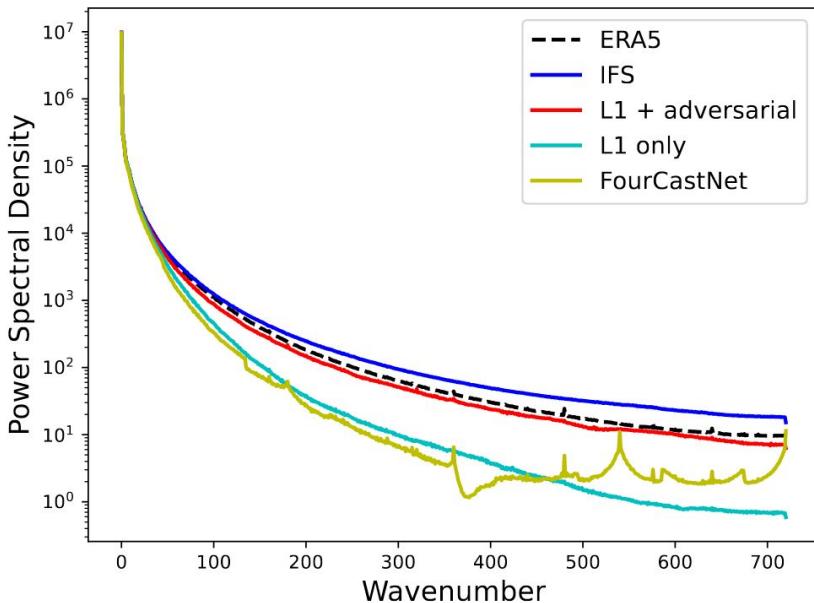
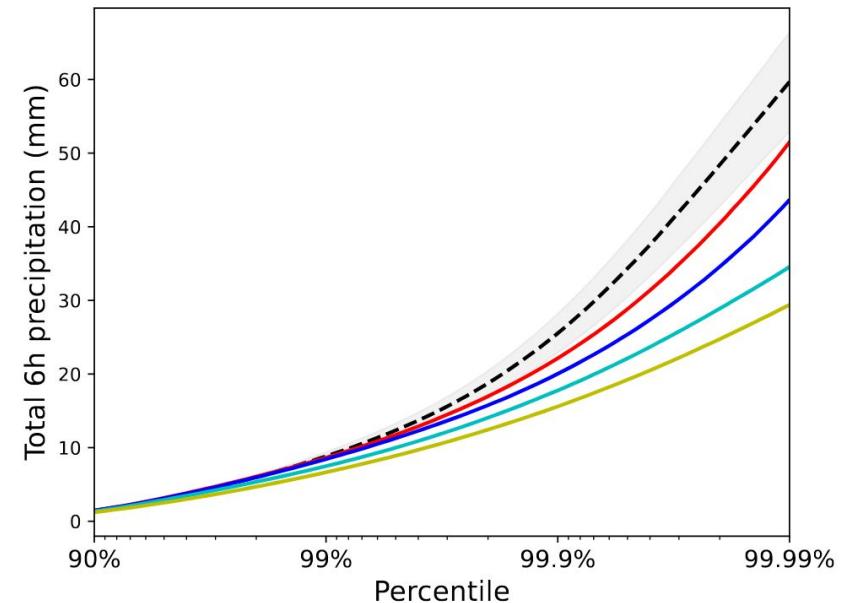


Results – Fine-scale details



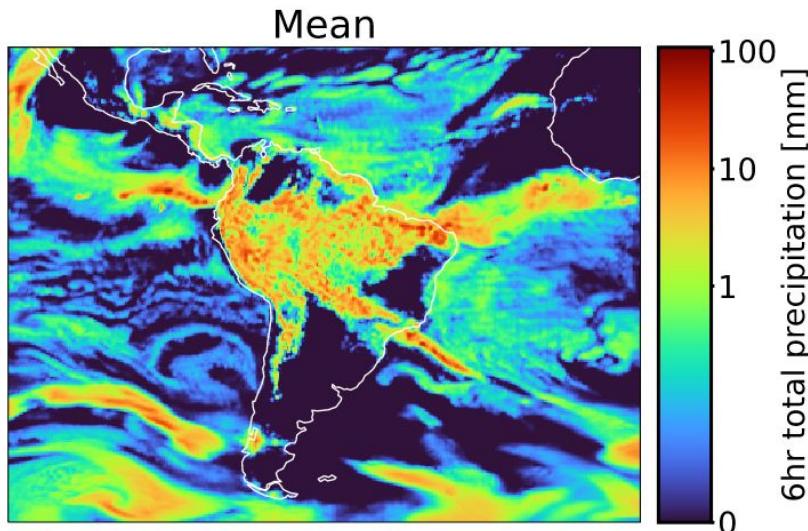
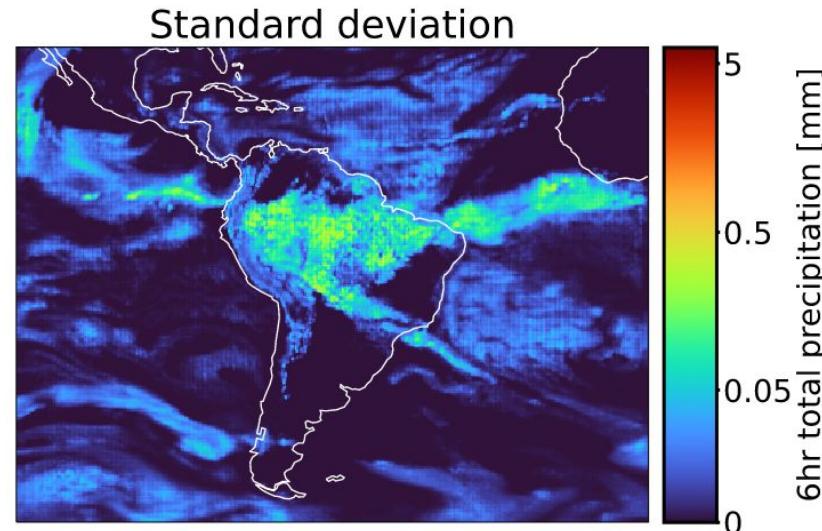
Results – Extremes

Predicted, 18 hr lead time



Ensemble Predictions

100-member ensemble mean and SD fields



Conclusions

- We extended FourCastNet with a GAN precipitation network, leading to promising improvements in fine-scale detail and precipitation extremes.
- We plan to explore further opportunities for improvement:
 - Integrate recent work to improve the stability of FourCastNet predictions for longer time horizons.
 - Use variational methods to increase diversity of generated outputs for higher accuracy and ensemble-based inference.

Thank you!

James Duncan
PhD Student
UC Berkeley

Shashank Subramanian,
NESAP Postdoc
NERSC

Peter Harrington
ML Engineer
NERSC

Berkeley
UNIVERSITY OF CALIFORNIA

References

- IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge, UK, 2022. [doi:10.1017/9781009157926](https://doi.org/10.1017/9781009157926).
- L. P. Rothfusz, R. Schneider, D. Novak, K. Klockow-McClain, A. E. Gerard, C. Karstens, G. J. Stumpf, and T. M. Smith. FACETS: A proposed next-generation paradigm for high-impact weather forecasting. *Bulletin of the American Meteorological Society*, 99(10):2025 – 2043, 2018. doi: 10.1175/BAMS-D-16-01001. URL <https://journals.ametsoc.org/view/journals/bams/99/10/bams-d-16-01001.xml>
- D. Chen, A. Dai, and A. Hall. The convective-to-total precipitation ratio and the “drizzling” bias in climate models. *Journal of Geophysical Research: Atmospheres*, 126(16):e2020JD034198, 2021. Doi: <https://doi.org/10.1029/2020JD034198>. URL <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JD034198>. e2020JD0341982020JD034198.
- J. Pathak, S. Subramanian, P. Harrington, S. Raja, A. Chattopadhyay, M. Mardani, T. Kurth, D. Hall, Z. Li, K. Azizzadenesheli, et al. FourCastNet: A global data-driven high-resolution weather model using adaptive fourier neural operators. *arXiv preprint arXiv:2202.11214*, 2022.
- T. Kurth, S. Subramanian, P. Harrington, J. Pathak, M. Mardani, D. Hall, A. Miele, K. Kashinath, and A. Anandkumar. FourCastNet: Accelerating Global High-Resolution Weather Forecasting using Adaptive Fourier Neural Operators. *arXiv preprint arXiv:2208.05419*, 2022.
- J. Leinonen, D. Nerini, and A. Berne. Stochastic super-resolution for downscaling time-evolving atmospheric fields with a generative adversarial network. *IEEE Transactions on Geoscience and Remote Sensing*, 59(9):7211–7223, 2020.
- S. Ravuri, K. Lenc, M. Willson, D. Kangin, R. Lam, P. Mirowski, M. Fitzsimons, M. Athanassiadou, S. Kashem, S. Madge, et al. Skilful precipitation nowcasting using deep generative models of radar. *Nature*, 597(7878):672–677, 2021.
- I. Price and S. Rasp. Increasing the accuracy and resolution of precipitation forecasts using deep generative models. In *International Conference on Artificial Intelligence and Statistics*, pages 10555–10571. PMLR, 2022.
- L. Jiang, C. Zhang, M. Huang, C. Liu, J. Shi, and C. C. Loy. TSIT: A Simple and Versatile Framework for Image-to-Image Translation. In A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, editors, *Computer Vision – ECCV 2020*, pages 206–222, Cham, 2020. Springer International Publishing. ISBN 978-3-030-58580-8.