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Precipitation forecasting

¢ Traditional numerical weather models suffer from:

o High computational cost: Estimated 596 MWh/SY for a global
Tkm-scale weather model [T. Kurth, et al. 2022]

o Inaccurate precipitation extremes: The “drizzling bias” [D. Chen,
et al. 2021]

¢ Deep learning-based models have become increasingly
skilled

Competitive or superior accuracy [J. Pathak, et al. 2022]
Multiple orders-of-magnitude reduction in computational cost
[T. Kurth, et al. 2022], both in time and energy

= large ensemble predictions + forecast inference
¢ Yet DL-based precipitation forecasting is still lacking in:

1) fine-scale details
2) accurate prediction of extremes
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Generative modeling of precipitation

Generative adversarial networks (GANs) have recently shown

promise to produce realistic high-resolution local precipitation
fields [J. Leinonen, et al. 2020; S. Ravuri, et al. 2027; I. Price & S. Rasp, 2022].

Opportunities:

- Ability to generate realistic-looking fine-scale details on
global scales.

- Better able to handle the high sparsity and heterogeneity
that comes with precipitation data.

Challenges:

- While realistic-looking, GAN “hallucination” may lead to
poorly-calibrated predictions.

- GANs are notorious for distributional collapse, leading to
insufficient exploration of climate variability.
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Inputs

ERAS: Fifth generation ECMWEF global reanalysis dataset
¢ 21 ‘“scaffolding” variables, various vertical levels
¢ 0.25°%lat x lon =720 px by 1440 px

Temperature Relative humidity Geopotential

Total column water vapor Surface pressure Mean sea-level pressure

¢ Training: 1979 - 2015 | Validation: 2016 - 2017 | Testing: 2018
e At=6hrs
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Our GAN Precipitation Framework

We employ a recent image-to-image translation network [L. Jiang,

et al.2020] to predict global precipitation fields at 0.25° resolution.

Total precipitation (6 hour accumulated)

The network has 4 components:

1) Input Stream

2) Noise Stream
3) Generator
4) Discriminator
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Input Stream

Input: 21 x 720 x 1440 px

@)
Input Stream
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The Input Stream provides multi-scale representations of the 21
scaffolding variables.
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Noise Stream

@)

Input: 21 x 720 x 1440 px

Input Stream
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Noise Stream
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The Noise Stream helps prevent distributional collapse by
injecting randomness into the scaffolding representations.
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Generator

1)

Input: 21 x 720 x 1440 px

Input Stream
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(3) Prediction: 720 x 1440 px
Generator =
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E® The Generator integrates the sequence of noisy scaffolding
variable representations, working from coarse to fine scales.
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Discriminator

1)

Input: 21 x 720 x 1440 px

Input Stream
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Noise Stream
"AddNoise | "AddNoise | "AddNoise |
(3) Prediction: 720 x 1440 px
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Results — Fine-scale details

FourCastNet
(previous) 4

Ground truth
(ERAS)

4 Predicted,
18 hr lead time \

L1 + adversarial
(ours)
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Results — Extremes

Predicted, 18 hr lead time
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Ensemble Predictions

100-member ensemble mean and SD fields

6hr total precipitation [mm]

o
n

- 10.05

6hr total precipitation [mm]
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Conclusions

e We extended FourCastNet with a GAN precipitation network,
leading to promising improvements in fine-scale detail and
precipitation extremes.

e We plan to explore further opportunities for improvement:

o Integrate recent work to improve the stability of FourCastNet
predictions for longer time horizons.

o Use variational methods to increase diversity of generated outputs
for higher accuracy and ensemble-based inference.
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