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Precipitation forecasting
◆ Traditional numerical weather models suffer from: 

○ High computational cost: Estimated 596 MWh/SY for a global 
1km-scale weather model [T. Kurth, et al. 2022]

○ Inaccurate precipitation extremes: The “drizzling bias” [D. Chen, 
et al. 2021]

◆ Deep learning-based models have become increasingly 
skilled

○ Competitive or superior accuracy [J. Pathak, et al. 2022]

○ Multiple orders-of-magnitude reduction in computational cost 
[T. Kurth, et al. 2022], both in time and energy
⇒ large ensemble predictions + forecast inference

◆ Yet DL-based precipitation forecasting is still lacking in: 

1) fine-scale details
2) accurate prediction of extremes



Generative modeling of precipitation
Generative adversarial networks (GANs) have recently shown 
promise to produce realistic high-resolution local precipitation 
fields [J. Leinonen, et al. 2020; S. Ravuri, et al. 2021; I. Price & S. Rasp, 2022].

Opportunities:

- Ability to generate realistic-looking fine-scale details on 
global scales.

- Better able to handle the high sparsity and heterogeneity 
that comes with precipitation data.

Challenges:

- While realistic-looking, GAN “hallucination” may lead to 
poorly-calibrated predictions.

- GANs are notorious for distributional collapse, leading to 
insufficient exploration of climate variability.



Inputs
ERA5: Fifth generation ECMWF global reanalysis dataset

◆ 21 “scaffolding” variables, various vertical levels
◆ 0.25° lat x lon = 720 px by 1440 px

Temperature Wind velocities Relative humidity Geopotential

Mean sea-level pressureTotal column water vapor Surface pressure

◆ Training: 1979 – 2015  |  Validation: 2016 – 2017  |  Testing: 2018
◆ Δt = 6 hrs



Our GAN Precipitation Framework
We employ a recent image-to-image translation network [L. Jiang, 

et al. 2020] to predict global precipitation fields at 0.25° resolution.

The network has 4 components:

1) Input Stream

2) Noise Stream

3) Generator

4) Discriminator

Total precipitation (6 hour accumulated)

Target:



Input Stream

The Input Stream provides multi-scale representations of the 21 
scaffolding variables.



Noise Stream

The Noise Stream helps prevent distributional collapse by 
injecting randomness into the scaffolding representations.



Generator

         The Generator integrates the sequence of noisy scaffolding 
variable representations, working from coarse to fine scales.



Discriminator



Results – Fine-scale details
FourCastNet 

(previous)
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Predicted,
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Results – Extremes
Predicted, 18 hr lead time



Ensemble Predictions
100-member ensemble mean and SD fields



Conclusions

● We extended FourCastNet with a GAN precipitation network, 
leading to promising improvements in fine-scale detail and 
precipitation extremes.

● We plan to explore further opportunities for improvement:

○ Integrate recent work to improve the stability of FourCastNet 
predictions for longer time horizons.

○ Use variational methods to increase diversity of generated outputs 
for higher accuracy and ensemble-based inference.
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