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Abstract

Uncertainty quantification of weather forecasts is a necessity for reliably planning
for and responding to extreme weather events in a warming world. This motivates
the need for well-calibrated ensembles in probabilistic weather forecasting. We
present initial results for the calibration of large-scale deep neural weather models
for data-driven probabilistic weather forecasting. By explicitly accounting for
uncertainties about the forecast’s initial condition and model parameters, we gen-
erate ensemble forecasts that show promising results on standard diagnostics for
probabilistic forecasts. Specifically, we are approaching the Integrated Forecasting
System (IFS), the gold standard on probabilistic weather forecasting, on: (i) the
spread-error agreement; and (ii) the Continuous Ranked Probability Score (CRPS).
Our approach scales to state-of-the-art data-driven weather models, enabling cheap
post-hoc calibration of pretrained models with tens of millions of parameters and
paving the way towards the next generation of well-calibrated data-driven weather
models.

1 Introduction

Data-driven neural weather models [Sgnderby et al., 2020]] [Pathak et al., 2022]] [Hu et al., 2022]]
promise to revolutionize our capacity to predict extreme weather events, mitigate their disastrous
impacts, manage energy systems, and democratize access to high-quality weather forecasts. In
contrast to traditional, hand-crafted numerical weather prediction (NWP) systems like the IFS by
the European Centre for Medium-Range Weather Forecasts (ECMWF), these deep learning-based
systems learn to forecast future weather conditions given an initial condition from vast amounts of
historical observational or reanalysis data. This enables orders-of-magnitude speedups over state-of-
the-art NWP systems on modern hardware accelerators, while potentially matching or surpassing
NWP forecasting skill [Schultz et al., 2021].

Earth’s weather is a highly complex, multi-scale, nonlinear, chaotic system. Weather forecasts
are made based on incomplete knowledge of initial conditions and uncertainties in the model’s
characterization of the physics of the Earth system. Hence, it is crucial to quantify uncertainties in
our predictions to enable informed decision making. Therefore, a requirement for most applications
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of weather prediction systems are probabilistic forecasts. These probabilistic forecasts often take the
form of ensemble forecasts [Houtekamer and Deromel |1995]] [|Atger, |[1999]], predicting n different
trajectories using perturbed initial conditions or perturbed parameters in models to statistically
quantify forecast uncertainties. Deep neural networks, however, just like deterministic NWP models,
are known to be overconfident in their predictions, unless careful countermeasures are taken

let al.l 2013]] [Guo et al.,[2017].

In this paper we show that model-agnostic perturbation strategies based on spatially correlated scale-
aware initial condition noise and Bayesian model uncertainty leads to well-calibrated ensembles of
trajectories and consistent calibration gains over the baseline, measured by metrics routinely used to
quantify reliability of probabilistic weather forecasts: (i) spread-error agreement; and (ii) the CRPS.
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Figure 1: The ensembling strategy presented in this paper: (i) Perturbing initial conditions with
spatially correlated noise to produce n initial states; and (ii) Sampling n different FourCastNet models
from a posterior distribution over models. Each model auto-regressively predicts a unique trajectory.

2 Methods

2.1 FourCastNet and ERAS Reanalysis

We base this work on the state-of-the-art FourCastNet [Pathak et all, [2022]], a data-driven high-
resolution global weather model. FourCastNet is an auto-regressive transformer-based neural network
based on the Adaptive Fourier Neural Operator [Guibas et al. [2021]. Given an initial condition,
FourCastNet predicts the atmospheric state 6 hours into the future. The output of the network then
gets fed back into the network to iteratively produce subsequent forecasts, time-step by time-step,
up to two weeks. FourCastNet is highly scalable [Kurth et al,[2022] and its skill has been shown
to be approaching ECMWF’s IFS, including on extreme weather events such as hurricanes, tropical
cyclones, and extratropical cyclones.

Here, we take the ground-truth for training and evaluation to be a 26-variable subset of the ERAS
global reanalysis dataset [Hersbach et al.,[2020] provided by ECMWE. The input and output of the
neural network are therefore 26 meteorological variables at a global spatial resolution of 0.25 degrees,
or 25 km (represented by a tensor of shape [26, 720, 1440]).

2.2 Initial condition uncertainty

To create ensemble forecasts we perturb the initial condition (IC), i.e. the weather conditions from
which we start the forecast. We thus run n trajectories from perturbed versions of our initial state.

We empirically notice that perturbing the initial condition by uncorrelated Gaussian noise leads
to under-dispersive ensembles: The noise dissipates quickly and does not produce an appropriate
amount of spread. This is our baseline.

We hypothesize that if FourCastNet acts like a real dynamical system, we should expect the network
to have physically plausible sensitivity to the initial condition. Thus, the spatial scale of perturbations
should matter. To test this hypothesis, we add spatial correlation to the perturbations. We use pink
noise with a power spectral density inversely proportional to the sum of the = and y frequencies of
the 2-dimensional noise signal (ﬁlfy) .



2.3 Model uncertainty

Another source of forecast uncertainty is that of the forecast model itself. Since the model is trained
on a finite amount of data, and the reanalysis dataset uses a model with incomplete and unknown
physics, uncertainty about the parameters of the neural network remains even after training. A popular
approach to uncertainty quantification in deep learning is to explicitly account for this so-called
epistemic uncertainty using Bayesian methods [Wilson and Izmailov} 2020].

To improve calibration of FourCastNet, we employ an efficient post-hoc approximation of p(6| D),
the posterior distribution over model weights 6 given training data D. By sampling different models
0; during inference, we achieve diverse ensemble forecasts.

As demonstrated by Maddox et al.| [2019], we run Spread / RMSE correspondence
stochastic gradient descent with a high, constant learning 275 | — IFs RMSE
rate starting from the fully trained FourCastNet model -=- IFs Spread
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3 Results

Evaluating the quality of probabilistic weather forecast-
ing systems is a multi-dimensional problem, including
many qualitative and quantitative metrics and diagnos-
tics [Murphy, |1993} |Christensen et al., [2014]]. Since the
specific requirements of any real forecasting system de- ] 0 & & W 1o
pend on the intended use-cases of the system, we focus lead time (hr)

on general-purpose diagnostics here that are applicable

to global forecast ensembles, and leave a thorough use- Figure 2: Ensemble spreads (square root

case-specific investigation for future work. of average ensemble variance) and skills
(RMSE) as a function of lead time for Uy

(the 10m U-component of wind speed)
and surface pressure

Surface Pressure (Pa)

3.1 Spread-Error Agreement

A well-calibrated ensemble should have its forecast spread match its forecast error. Following |[Fortin
et al.[[2014], we define the ensemble spread as the square root of the average ensemble variance, and
verify that the forecast skill (RMSE of the ensemble mean) approximately equals this spread.

Figure 2 (top panel) illustrates this using a 50-member TIGGE [Bougeault et al., [2010] IFS ensemble.
Here, spread and RMSE are approximately equal. We run 50-member ensemble predictions for 10
non-overlapping time-frames in the out-of-sample year 2018 for our baseline (uncorrelated Gaussian
noise, no Bayesian model) and our Bayesian model with pink noise.

Figure 2 (middle and bottom panels) show the spread-error agreement for different variables. Note
that the Bayesian model with correlated IC perturbations (pink noise) has higher skill (lower RMSE),



with a spread profile that matches the RMSE more closely than the baseline. Also note that while the
baseline ensemble is generally under-dispersive (spread lower than RMSE), for some variables like
surface pressure, the ensemble spread diverges. This could be alleviated by reducing the magnitude
of IC perturbations, however, at the cost of even stronger under-dispersiveness on other variables.

3.1.1 CRPS

A common metric for probabilistic forecasts of con-
tinuous variables is the CRPS [Matheson and Win{ CRPS
kler, |1976, |Leu, [2020]. It scores a predicted distri- — Baseline

bution against the actually observed outcome and 49 — ours
encourages well-calibrated predictions. If F' de- — IFs
notes the CDF of a predicted distribution and y the 12
observed outcome, then we define CRPS(F,y) =
[ (F(y') = 1(y' — y))? dy’, where 1 denotes the
heavy-side step function. This metric is useful, since
we generally do not have access to the actual prob- 08
ability distribution over future weather, but only re-
alisations sampled from this distribution. In order to 06
minimize the expected CRPS, we need our predicted
distribution to be equal to the actual (unknown) dis-

tribution over future weather states. 25 Baseline
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Encouraging improvements are found in all fore-
casted variables with CRPS reductions beginning
to approach the IFS standard. This is reassuring
especially given the simplicity of our uncertainty EER , : , : :
quantification approach. We expect that refinements ® “ Ie: p timeao(hr} wo om0
to this approach, such as incorporating multivariate

spatio-temporal correlations in IC noise that is in-
jected, could yield additional gains in calibration.

Figure 3: Ensemble CRPS comparing the
baseline FourCastNet, the Bayesian FourCast-
Net and the IFS ensemble

4 Conclusion and future work

We have presented initial evidence that large neu-

ral weather models can be used to produce well-

calibrated ensemble forecasts using scale-aware spa-

tially correlated initial condition noise and Bayesian deep learning methods for quantifying model
uncertainty. While these methods do not surpass state-of-the-art NWP models in terms of standard
calibration metrics like CRPS, we view these first successes as a promising sign: The sensitivity
of FourCastNet to spatially correlated noise serves as evidence that FourCastNet acts like Earth’s
chaotic weather system.

In future work we plan to exploit correlation between physical variables and between time-steps for
more principled perturbations. In addition to these perturbed initial conditions, more sophisticated
approaches to Bayesian model uncertainty are possible, and might indeed be required to gracefully
scale to much larger models. While SWA-G can scale to large models, recent results [Daxberger
et al.| 2021]] suggest that we might be able to outperform SWA-G at lower cost by performing more
expressive posterior approximation on a subset of our network.
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