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Abstract

Plant diseases are costly and threaten agricultural production and food security
worldwide. Climate change is increasing the frequency and severity of plant
diseases and pests. Therefore, detection and early remediation can have a significant
impact, especially in developing countries. However, AI solutions are yet far from
being in production. The current process for plant disease diagnostic consists
of manual identification and scoring by humans, which is time-consuming, low-
supply, and expensive. Although computer vision models have shown promise
for efficient and automated plant disease identification, there are limitations for
real-world applications: a notable variation in visual symptoms of a single disease,
different light and weather conditions, and the complexity of the models. In this
work, we study the performance of efficient classification models and training
“tricks” to solve this problem. Our analysis represents a plausible solution for
these ecological disasters and might help to assist producers worldwide. More
information available at: https://github.com/mv-lab/mlplants

1 Introduction

Plant diseases affect crop production in developed as well as developing countries. Their rapid
identification remains difficult, particularly in parts of the world that lack the necessary resources.
This can sometimes trigger serious environmental disasters that severely affect the economy.
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Figure 1: (Left) We aim to process images captured in-situ in the field using a smartphone, due to the
efficiency of the studied models. (Right) Semi-supervised noisy student workflow [25].

Cassava (Manihot esculenta) is one of the key staples and food security crops in Africa. At least
80% of household farms in Sub-Saharan Africa grow this starchy root. It is robust to adverse weather
conditions and is the second-largest provider of carbohydrates in Africa. Several diseases plague the
crop and cause annual yield losses valued at an estimated 20 million dollars [17].
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Accurate disease diagnostics requires agricultural experts from government agencies to visually
inspect the plants. This makes it difficult to effectively monitor and treat disease progression.

In terms of value, Apple (Malus domestica Borkh. 1803) is one of the most economically important
fruit crops in the world; in the US $15 billion annually [19]. Apple production is heavily affected by
a wide range of pests and diseases including mites, aphids, stink bug, european sawfly, etc. Early
and accurate disease detection is critical for management in orchards, not least because pesticide
(over-)use has negative environmental impact.

Recent advances in machine learning and computer vision (CV) paired with universal and global
access to smartphones lead a clear way towards low-cost plant disease diagnosis in the wild. The
potential impact of an efficient smartphone implementation of such technology is immeasurable.
Although CV models have shown promising results for efficient plant disease detection [23, 19, 12],
there are many factors which complicate the design of such a tool e.g., multiple diseases are present
in an image, small datasets, and noisy inputs (light and shade variations, non-uniform backgrounds).

Our contributions aim to tackle these challenges in the wild. We explore state-of-the-art models and
regularization techniques to achieve such general and robust application, as illustrated in Figure 1.

2 Related work

In recent years, multiple large-scale annotated datasets [17, 23, 19, 12] for this topic have been
proposed. We will discuss the datasets in Section A. Kumar et al. [15] presented the first mobile app
(“Leafsnap”) for identifying plant species using automatic visual recognition in 2012. Since 2016,
deep learning and computer vision approaches have been used in many agriculture problems such
as automated plant species identification and phenotyping [2] and plant pathology recognition [1],
among others. These approaches use Convolutional Neural Networks (CNNs) [8, 22]. Mohanty et
al. [16] introduced the use of deep learning and CNNs for image-based plant disease detection using
the "PlantVillage" dataset [12]. More recently, Keaton et al. [14] proposed a model for plant species
identification using object detection as a form of attention.

Existing computer vision research in categorization struggles with fine-grained attributes recognition
due to the inherently high intra-class variance and low inter-class variance [11]. The large variation
in visual symptoms of a single disease class across different samples present the major challenge
for deep learning models. This variation arises, for example, from differences in natural and image
capturing environments, leaf color and morphology. Hence, models must be robust to environmental
variation (i.e. viewpoints, light, background), and, due to the nature of the public large-scale datasets,
the models should learn from noisy labels [18] .

2.1 Datasets

Plant pathology researchers have collected real world datasets with enough variability and size to
train deep learning models. Images of disease symptoms on leaves were captured using smartphones
at different distances and angles from the leaves, with different focus and light conditions to represent
real world scenarios. We use the following public datasets from different FGVC-CVPR editions:

1. iCassava 2019 [17] consists of labeled and unlabeled images of healthy and diseased cassava
plant leaves showing 4 types of diseases.

2. Cassava Leaf Disease Classification 2021 Dataset an extended training dataset of 21397
labeled images, and 15000 test images.

3. FGVC Plant Pathology 2020 [23, 19]. This is a large, real-life disease pilot dataset, which
contains approximately 23000 high-quality expert-annotated images of apple foliar diseases.

4. Our dataset. We pre-process the images, unify and extend the previous datasets. We
perform a 70/30% stratified split, obtaining 29295 training images, and 12555 test images.

We aim to reflect real-world scenarios: (1) Imbalanced classes, (2) Different backgrounds, light,
angles, and noise conditions. (3) Different physiological age of the plants, (4) Co-occurrence
of multiple diseases on the same plant, and (5) Different focus of the images. We do not use
curated datasets captured in-lab under non-realistic scenarios, i.e. Plant Village Dataset [12]. More
information about the datasets can be consulted in the Appendix A.
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Figure 2: We can see (a) sample from the Plant Village Dataset [12] with uniform background, focus
and illumination; we consider this non-realistic. In contrast, (b) (c) (d) represent real scenes in the
field, where leaves are surrounded and “mixed”, we define these as noisy labels (or hard samples).

3 Learning with Noisy Labels

In Section 2, we discuss some challenges when developing computer vision models for this task: (1)
fine-grained attributes and great intra-class variability, (2) noisy labels. We focus on the second point,
as fine-grained visual categorization is a well-studied topic [11].

We define two different types of noisy labels, both are represented in Figure 2.

1. Misclassified images: The provided annotations from non-experts and farmers for these
images are apparently wrong. We estimate these to be a small portion of the dataset.

2. Images with noisy labels: Multiple plants (or leaves) appear in the same image, each one
might have a different label. For instance, in Figure 2, we can see healthy leaves surrounded
by diseased leaves, and these with different type of diseases.

In this Section, we introduce our experimental setup. In Section 3.3 we explain how to transfer
learning from models pre-trained on a generic task, to few-shot fine-grained multi-class classification.
We also propose a simple approach for automated annotation and semi-supervised learning.

3.1 Models

We use SOTA Deep Convolutional Neural Networks: ResNet [8], ResNeSt [26], and EfficientNet [22].
We also explore compact models designed for mobile devices: GhostNet [7] and MobileNetV2 [21].
Note that we focus on efficient light-weight models that can fit into a smartphone, our main objective
is to outperform complex deep models using them, while being robust - as we can see in Table 1 -.

3.2 Implementation details

In Figure 3 we show our framework for training and evaluating deep learning models: Hydrogen
Torch [6]. Our framework integrates well-known tricks for image classification [9], such as: mixed
precision training, cosine annealing LR scheduler, gradient accumulation, and advanced augmenta-
tions (Cutout [4] and Mixup [27]) amongst other state-of-the-art techniques. The implementation is
done using Pytorch. We use model architectures from the timm package [24]. The image size is set
to 512px. Experiments are performed using a single NVIDIA RTX-3090 GPU. We refer the reader to
our repository and documentation for more details.

3.3 Transfer Knowledge and Distill

Deep learning models are data-hungry and require large amounts of annotated data. In Section 3 we
have introduced our main experimental setup. Initially we train different SOTA models for the task
of classifying if a crop is healthy or not, we consider the cost of annotating healthy/disease (binary
class) “cheaper” than producing fine-grained annotations per disease. In this Section we explain
how to transfer the learning from such models, trained on a general task using cheap and noisy
labels, to perform fine-grained classification [11] of the disease using few-shot learning. In Table 1
we show the results from our experiments using different light-weight models and training techniques.
Few-shot (FS) models were pre-trained using our dataset (29295 training images), and in this stage,
they are fine-tuned using 550 images with labels of five classes: healthy, rust, scab multiple diseases.
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Model img. size ROC AUC Mobile

1st place (SEResNeXt [10]) 512 0.984 ✗
2nd place (ResneSt101 [26]) 545 0.981 ✗
3rd place (EffNet B7 [22]) 768 0.980 ✗
ResNet34 [8] 512 0.969 ✗

Ours EfficientNet B0 [21] 512 0.975 ✓
Ours GhostNet [7] 512 0.970 ✓
Ours MobileNetV2 [21] 512 0.967 ✓
Ours FS MobileNetV2 [21] 512 0.910 ✓
Ours FS GhostNet [7] 512 0.900 ✓
Ours SS MobileNetV2 [21] 512 0.973 ✓
Ours AL MobileNetV2 [21] 512 0.950 ✓

Model F1-score F1-score TTA Mobile N. params (M)

ResNet-50 [8] 0.9486 0.9500 ✗ 23.5
ResNeSt-50 [26] 0.9526 0.9530 ✗ 25.4
GhostNet-100 [7] 0.9559 0.9570 ✓ 3.9
FBNet-V3 [3] 0.9590 0.9601 ✓ 3.6
EfficientNet B0 [22] 0.9583 0.9595 ✓ 4.9
MobileNetV2 [21] 0.9540 0.9552 ✓ 3.4
ViT [5] 0.9185 0.9240 ✗ 86.6

Table 1: (Left) Leaderboard Plant Pathology Challenge, (right) Helthy-Diseased Classification using
our dataset. The metric is the mean class-wise ROC AUC. We use our “bag of tricks” to train
lightweight models suitable for mobile devices and achieve competitive performance even when
trained with Few-Shot (FS) data or Active Learning (AL).

For comparison, we also train the proposed light-weight models from scratch using the entire
competition dataset and our bag-of-tricks. We can see that the proposed models, even when trained
with few data, achieve competitive results, but most important, they can generalize while being
extremely small in comparison with other solutions (i.e. 10× smaller than 1st and 2nd place solutions,
in terms of parameters).

Semi-supervised (SS) Learning extends the idea of self-training and distillation [25]. We train a
teacher model EfficientNet B0 [22] on the fine-grained classification task using the few-data from the
challenge (pre-trained on our dataset). Next, we use this model to auto-label unseen data (test set)
and generate pseudo-labels, these samples are used to expand the training set. In Table 1 we show the
improvement due to this technique (SS), and we illustrate this process in Figure 1 (right).

Using Active Learning (AL) [20], one can keep optimising the labelling strategy as the models
improve. We use this technique in a experimental setup that illustrates a real scenario. We use the
Plant Pathology 2020 dataset [23] and start from a subset of 384 labeled images (20% of the training
set), we apply AL to train iteratively MobileNetV2 as proposed in the original algorithm [20]. This
model, started training with only 20% of labels, yet, it ended achieving competitive results as we
show in Table 1 (“Ours AL MobileNetV2”). Because we train with few data, this is trained using
classical augmentations (flips, color shifts, etc.) and MixUp [27]. More applications in Appendix B.

4 Conclusion

In this work we study different computer vision models for automated plant pathology recognition
in the wild. We focus on efficient and compact models that can be used on smartphones in real-
time for fine-grained plant disease categorization. Moreover, we provide some empirical tricks to
improve model’s generalization and robustness to different light and weather conditions, noisy image
background, or multiple instances in the same image. We hope this work serves as a spotlight to
tackle one of the major threats to food security in developing countries.

Figure 3: Our framework for fast experimentation, suitable for non-experts in machine learning [6].
We train the different studied models using the state-of-the-art image classification “tricks” [9].
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A Datasets

To encourage the development of computer vision algorithms, plant pathology researchers and experts
generated real world datasets with enough variability and size to train deep learning models. Images
of disease symptoms on leaves were captured using mainly smartphone cameras at different distances
from the leaves, from different angles, with different focus and light conditions to represent real world
scenarios. We use the following public datasets from different FGVC CVPR Workshop editions:

1. iCassava 2019 [17] consists of labeled and unlabeled images of healthy and diseased cassava
plant leaves showing 4 types of diseases. The annotations hence consist of the following 5
classes: Healthy, Cassava Mosaic Disease (CMD), Cassava Brown Streak Disease (CBSD),
Cassava Bacterial Blight (CBB), Cassava Green Mite (CGM). All the collected images
were manually labelled by experts from the National Crops Resources Research Institute
(NaCRRI) in Uganda, who scored each of the images for disease incidence and severity.

2. Cassava Leaf Disease Classification 2021 Dataset is an extension of the previous dataset.
Authors propose a challenge2 where participants train models on a public training dataset of
21397 labeled images, and test them on 15000 unknown test images.

3. FGVC Plant Pathology 2020 [23]. This is a large, high-quality, real-life disease pilot
dataset of multiple apple foliar diseases captured during the 2019 growing season. Photos
were taken using a DSLR camera and smartphones under various conditions. The dataset
contains a total of 3651 images of leaves with 1200 apple scab, 1399 cedar apple rust, 187
complex disease, and 865 healthy leaves, respectively. The dataset was randomly split into
training and stratified test set of 50% and 50%, respectively, or 1821 training images and
1821 test images. The challenge3 associated to this dataset provided all the images to the
participants, but only training data ground-truth.

4. Our dataset. We unify and extend the previous datasets. We unify the different diseases
into a unique disease class, therefore we only consider two classes (healthy and diseased).
This dataset contains 41850 images, we holdout using 70/30% stratified split, 29295 train
and 12555 test images. This dataset represents a realistic scenario where fine-grained
annotations are not available (due to the time-consuming and expensive process), but it is
straight-forward to determine, whether a plant is healthy or not.

B Application Context

In previous sections and Figure 1 we already studied ML models to help farmers and producers
(especially in developing countries) to deal with plant pathologies and plagues, which represent a
critical ecological disaster. We have explained the technical challenges (see Sec. 3.3), and studied
lightweight models suitable for real-time applications on smartphones [21, 13]. Another potential
example of combining our ideas and Active Learning[20] with noisy labels is as follows:

1. Capture 1000 images and label 80% (set A) using general annotations (i.e. healthy, diseased).
This process is cheaper and faster than producing fine-grained multi-class annotations, we
only produce such high-quality annotations only for 20% of the images (set B).

2. Train a general (teacher) model Ma (see Sec. 3) on the set A.
3. Transfer knowledge from Ma to a light-weight compact Mb trained on set B for fine-grained

disease recognition. Our experiments show that these models even when trained with few
noisy data, achieve competitive results (see Sec. 3.3).

4. We can deploy Mb easily on a smartphone (i.e. using AI Benchmark app [13]).
5. Using models Ma and Mb we can automatically annotate more images in the future and

apply AL. These annotations or pseudo-labels allow us to expand the original dataset and
re-train models efficiently [25] as we propose in Sec. 3.3.

This process allows to annotate data and train models in a dynamic way, while getting real feedback
from farmers and producers. We also designed a framework for training our models, tracking results
and do interpretability analysis in a interactive manner. This framework is illustrated in Figure 3.

2https://www.kaggle.com/c/cassava-leaf-disease-classification/
3https://www.kaggle.com/c/plant-pathology-2020-fgvc7/
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