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Using uncertainty-aware
machine learning
models to study aerosol-
cloud interactions
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Motivation

* Climate change is one of the major challenges of our
time
e \We use climate models are used to understand future

projections due to climate change

 But their predictions come with uncertainties, arising
from being unable to explicitly model small-scale
interactions, such as aerosol-cloud interactions 12
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Aerosol-Cloud Interactions (ACl)

* Aerosol (in the form of pollution) enters the
atmosphere, eventually interacts with a cloud,

¢ :/2 leading to ACI 3

1. Aerosol particles activating as cloud droplet nuclei
2. Increasing the number of cloud droplet within the
cloud

Reducing the mean radius of cloud droplet
Increasing the cloud’s brightness

*.‘;. i ¢ E 5. Cloud reflecting more incoming sunlight

* ACI are a net cooling process, and offset some
Cloud droplat Twomey effect fraction of warming due to greenhouse gases

formation (ACI)

e

i
o

Twomey effect (ACl)
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Methods

Unobserved Confounding

Aerosol
Optical
Depth

Environmental Information Cloud Droplet Radius

1. Causal graph of ACI
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* Treatment T: aerosol optical depth (a proxy for
aerosol)
* Outcome Y: cloud droplet radius
* Measured confounding X: meteorological g =20
proxies (e.g. temperature, winds, humidity) Y
 Unmeasured confounding U (e.g. humidity
causing aerosol swelling and altering cloud
properties)

Note: confounding variables have an impact on the
results of a statistical test but are not the variables that
causal inference is studying



UNIVERSITY OF

NEURAL INFORMATION

¢ PROCESSING SYSTEMS N‘,. OXFORD

*het

Methods

Unobserved Confounding

Aerosol
Optical
Depth

Environmental Information Cloud Droplet Radius : _ ; - ‘\ e
1. Causal graph of ACI 2. Satellite data from the
Atlantic and the Pacific
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Methods

* Overcastis used to
identify the conditional
average potential
outcome (CAPO) from
the observational
distribution

* Allows to account for
unobserved
confounding through
the parameter A
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b. Transformer Feature Extractor

a. Feed-Forward Neural Network Feature Extractor

InputEmbedding
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3. Uncertainty-aware ML model (Overcast) 4
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Methods

Unobserved Confounding

b. Transformer Feature Extractor
a. Feed-Forward Neural Network Feature Extractor

EncoderBlock.
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Overcast
= Feature Extractor
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treatment A -
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Density Estimator

DenseFeatureExtractor
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Environmental Information Cloud Droplet Radius b"*\ e 3 . U nce rta i I‘Ity-awa re M I.

1. Causal graph of ACI 2. Satellite data from the model (Overcast)
Atlantic and the Pacific
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Estimating A

1.4
a=0.05
1.2 Atlantic
' —— Pacific
10 N-1.0 for Atlantic
' A =1.07 for Pacific
* Theoretically: A allows to derive 08
confidence intervals dependent
. . 0.6
on the influence of confounding e
* In practice: we contrast two 0.4
regions known for their ACI with 0.2
different environmental drivers
o 0.0
of confounding effects to
estimate a reasonable value for A —0.2
* N=1.07 is selected as the
. 0.05 0.10 0.15 0.20 0.25 0.30
uncertainty bounds (blue) cover AOD
the entire ignorance region of Dose-response curves: plausible ranges of
the Atlantic predictions (ora nge) effects of aerosols on cloud droplet radius in the

Atlantic and the Pacific
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Results

1.4
a=0.05
—— Pacific
1.2 --- HadGEM3-GC3-LL
UKESM1-0-LL
1.0 . === CanESM5
\\\:'\__ A =1.07 for Pacific
0.8 S -
* We judge how well climate models o \
(dashed lines) recreate this observed o
trend, by seeing if their responses lie 0.4
within our derived intervals (shaded
blue) 02
* We find that CanESM5 simulates ACI 0.0
better than the two other models
* Cooling effect due to ACI would offset 02
approximately half of the warming 005 010 o015 020 o095 030
due to greenhouse gases ' ' “AOD ' '

Comparison with Earth System Models
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Take-home message

1. Domain 2. Data 3. ML model
knowledge and

knowledge

Unobserved Confounding

Aerosol Overcast

Optical
Depth

Environmental Information Cloud Droplet Radius
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