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Abstract

Aerosol-cloud interactions (ACI) include various effects that result from aerosols
entering a cloud, and affecting cloud properties. In general, an increase in aerosol
concentration results in smaller droplet sizes which leads to larger, brighter, longer-
lasting clouds that reflect more sunlight and cool the Earth. The strength of the
effect is however heterogeneous, meaning it depends on the surrounding environ-
ment, making ACI one of the most uncertain effects in our current climate models.
In our work, we use causal machine learning to estimate ACI from satellite obser-
vations by reframing the problem as a treatment (aerosol) and outcome (change in
droplet radius). We predict the causal effect of aerosol on clouds with uncertainty
bounds depending on the unknown factors that may be influencing the impact of
aerosol. Of the three climate models evaluated, we find that only one plausibly
recreates the trend, lending more credence to its estimate cooling due to ACIL.

1 Introduction

Aerosol, in the form of pollution from human emissions, enters the atmosphere and eventually
interacts with a cloud leading to aerosol-cloud interactions (ACI). As aerosol enters the cloud, a
causal chain of events catalyzes. It begins with aerosol particles activating as cloud droplet nuclei,
which increases the number of droplets within the cloud, reducing the mean radius of cloud droplets
to redistribute the water vapor, and eventually increasing the cloud’s brightness (Figure 1(a)) [1].
Overall, an increase in atmospheric aerosol leads to larger, brighter, longer-lasting clouds that reflect
more incoming sunlight. ACI are thus a net cooling process and offset some fraction of warming due
to rising levels of COs. The strength of the effect is however dependent on the local environment
surrounding the cloud. ACI remain one of the most uncertain effects in our current climate models,
as current models are limited in their ability to simulate ACI with such environmental heterogeneity
[2, 3]. Climate models can only approximate ACI given their low spatial resolution and limited
parameterizations, often dependent on only a few environmental parameters, such as the relative
humidity within a grid cell. These factors lead to increased uncertainty in future projections. Currently,
state-of-the-art climate models estimate that the range of cooling due to ACI may offset 0%-50% of
the warming due to greenhouse gas emissions.

This work uses causal machine learning to estimate ACI from satellite observations, by reframing the
problem as a treatment (aerosol) and outcome (change in droplet radius). We predict the causal effect
of aerosol on clouds and provide uncertainty bounds that we compare to the parameterizations of
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climate model ACI. We consider uncertainty arising from violations of two assumptions: positivity
(or overlap) and unconfoundedness (or no hidden confounding). Positivity violations are due to
insufficient representation within the data for all treatment levels, such as "treating" cloud with aerosol.
Unmeasured confounding are unobserved factors which influence both the treatment and outcomes,
such as humidity causing aerosol swelling and altering cloud properties. To better understand these
individual sources of uncertainty, we use Overcast [4], a prime example of the needs of a community
such as ACI leading to methodological contributions in machine learning. Compared to prior work
such as [5], we consider aerosol optical depth (AOD), our proxy for aerosol concentration, as a
continuous treatment rather than discrete and perform an uncertainty-aware sensitivity analysis to
study the consequences of possible violations of positivity and unconfoundedness.
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Figure 1: The causal graph underlining our knowledge of ACI and satellite imagery of the two regions
analyzed, chosen due to their unique aerosol-cloud interactions and breadth of past studies to pull
knowledge from.

2 Methods

Following [4], we use the potential outcomes framework to estimate the effect of a continuous
treatment T € T (aerosol), on outcomes of interest Y € ) (cloud property), for a unit described
by covariates X € X (environmental information) as shown in Figure 1(a) [6, 7, 8, 9]. We call a
potential outcome and denote by Y what the outcome would have been if the treatment were t. The
covariates considered are relative humidity at 900, 850 and 700 millibar, sea surface temperature,
vertical motion at 500 millibars, lower tropospheric stability, and effective inversion strength. The
treatment is aerosol optical depth (AOD), a proxy for aerosol concentration. The outcome considered
is the cloud droplet size (r.). To estimate the treatment-effect, we study the conditional average
potential outcome (CAPO) and the average potential outcome (APO)

CAPO = u(x,t) =E[Yy | X =x], and APO = pu(t) =E [u(X,t)],
which can be identified from the observational distribution P(X,T,Y) using

i) =E[Y [T=t,X=x] and ji(t)=E[i(X,t)],

and further assumptions (unconfoundedness, positivity, no-interference and consistency). Here, we
study the robustness of treatment-effect estimates to positivity and unconfoundedness violations
(see Appendix A for more detail). We compute uncertainty bounds corresponding to user-specified
relaxations of these assumptions. The parameter A, for example, is set by the user to explain an
assumed level of unmeasured confounding [4, 10, 11]. Some confounding influences are impossible
to measure directly with satellites, such as humidity causing aerosol swelling and altering cloud
properties, and the parameter A can be used to encode an expert’s belief in the influence of such
confounders.

We use daily mean, 1° x 1° of satellite observations in order to homogenize the data from the
southeast Pacific and south Atlantic (Figures 1(b) and 1(c)). Mean droplet radius (r.) from the
MODIS instrument is used as our outcome for all experiments shown within. We employ aerosol
optical depth from MERRA-2 to approximate the concentration of aerosol. Our environmental
confounders are the relative humidity at 900, 850 and 700 millibars, the stability of the atmosphere,
the sea surface temperature, and the vertical motion at 500 mb, all also from MERRA-2. For more
detail about data and implementation, please refer to Appendix B and Appendix D.



3 Results

3.1 Deducing reasonable treatment-effect bounds using domain knowledge

Unlike past studies which only crudely estimate an uncertainty range due to quantifiable effects, we
are able to derive confidence intervals dependent on the influence of confounding by varying A. Since
it is impossible to know the strength of the confounding effect from observed data alone, we propose a
method to select a reasonable A by contrasting two geographical regions. We contrast the South-East
Pacific and the South Atlantic because these regions have different environmental confounders of
ACI, for example aerosol type, aerosol hygroscopicity, aerosol size. These are important confounders,
but are unfortunately not included in the available data. So we select the parameter A for the Pacific
region such that the treatment effect bounds for the Pacific region cover the effect bounds for the
Atlantic region under the assumption of no hidden confounding (A — 1) for the Atlantic region, as
shown in Figure 2(a). Setting A to 1.07 gives bounds for the pacific region that reasonably account
for the potential bias induced by the unmodeled confounders. While a larger A could still be sensible
due to other drivers of confounding, domain knowledge informs us that these are the main missing
physical mechanisms.

3.2 Evaluating climate models using machine learning

As we now have a possible range of ACI derived using the real, observed outcomes, we can judge
how well climate models recreate this observed trend by seeing if their responses lie within our
derived interval (Figure 2(b)). We find that the Canadian model CanESMS5 simulates ACI better than
the UK models HddGEM3-GC3-LL and UKESM1-0-LL. Our trained machine learning model not
only uses the real, observed relationships to derive the magnitude of the effect, but can consider the
environmental context and confounding influences to derive real, quantifiable bounds of uncertainty.
Therefore, by using the curves found by Overcast as the true response, we know those models which
lie outside of our bounds found by contrasting different regions are likely unphysical and highly
unlikely to occur in the real-world. CanESMS currently estimates the total cooling effect due to ACI
to offset approximately half of the warming due to greenhouse gases; based on our results, we would
say it is likely that this estimate is closest to the true value observed on Earth [12].
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Figure 2: Plausible range of effects of aerosol (AOD) on mean droplet radius (7).

4 Discussion and conclusions

4.1 Machine learning’s place in climate model verification

In this work, we show that machine learning methods offer viable ways to objectively judge how
well global climate models reproduce climate processes such as the effect of aerosol on mean droplet
radius. A drawback of historical studies which utilize satellite observations is their inability to



quantify how the surrounding environment may affect the magnitude of the aerosol-cloud interactions.
Overcast accounts for such contextual confounding and communicates bounds on the treatment effect
due to an expert-informed influence of hidden-confounding. Utilizing this method gives us insight
into whether climate models reproduce the observed relationships between AOD and r.. Climate
models currently only reasonably recreate large scale processes that can be explicitly calculated,
leaving processes like aerosol-cloud interactions, which occur on scales smaller than the grid scale,
poorly parameterized and approximated. In order to improve our climate models, we must understand
in more relatable terms how well they are doing, such as by comparing their outcomes to those
from observations. Machine learning provides not only a way to judge these outcomes, but the
relationships learned by Overcast and similar models could in the future be fine-tuned to replace our
current parameterizations [13].

4.2 Collaboration across domains vs. purely data driven

While different sources of confounding due to regional differences alter the outcomes, the choice
of which environmental factors are the main sources of confounding can also be investigated using
Overcast. We perform two experiments, with and without relative humidity at 900, 850 and 700
millibars, to derive varying outcome shapes and fit A to both dose-response curves. When A is set to
1.04, both curves are captured by the bounds of uncertainty, allowing us to view how the response may
vary within those bounds due to meteorological uncertainty rather than regional uncertainty, where
A = 1.07 was required (Figure 3(a)). In the absence of ground truth, purely data-driven techniques
cannot decide between the model with and without relative humidity, but as domain knowledge is
brought in, it is known that the curve with humidity included is the true response curve (Figure 3(b)).
Purely data-driven approaches may not be the most appropriate for studying climatological processes
such as aerosol-cloud interactions as domain knowledge is essential to select the correct inputs and
verify the outcomes. The most robust model arises from combining data and theory, bringing together
experts in machine learning and climate processes.
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Figure 3: Plausible range of effects when omitting relative humidity from the covariates.

4.3 Limitations and future works

This work uses aerosol optical depth as a proxy for aerosol concentration, which could bias treatment-
effect estimates. For example, it is known that bias can arise from measurement-error in the treatment
[14]. Further, we rely on low resolution data that does not perfectly capture the microphysical
processes. Future work could consider different assumptions on the underlying causal model, and
attempt to include other aerosol properties like size, hygroscopicity and type.
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A Theoretical background: unconfoundedness and positivity assumptions

Confounding variables are factors that influence both the treatment T and the outcomes Y. The
unconfoundedness assumption states that all confounding variables are observed and controlled for
using X, so that the treatment groups are comparable, that is, Yo 1L T | X.

The positivity assumption states that all subgroups of the data with different covariates have a non-
zero probability of receiving any dose of treatment, that is, p(t | x) > 0 for any t € 7 and for any
x € X such that p(x) > 0.

In practice, there is a trade-off between positivity and unconfoundedness due to the curse of dimen-
sionality, as with large X and continuous treatment, it is unlikely that we observe all treatment levels
foreachx € X.

B Data and pre-processing

We work with data which is retrieved from re-analyses of satellite observations. The Moderate
Resolution Imaging Spectroradiometer (MODIS) instruments aboard the Terra and Aqua satellites
observe the Earth at approximately 1 km x 1 km resolution [15]. These observations are fed into the
Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) real-time
model to emulate the atmosphere and its components, such as aerosol [16]. MERRA-2 calculates
global vertical profiles of temperature, relative humidity, and pressure, and assimilates hyperspectral
and passive microwave satellite observations to enhance its ability to model Earth’s atmosphere. The
data studied are MODIS observations from the Aqua and Terra satellites collocated with MERRA
reanalyses of the environments. We work with two different datasets which are 1° x 1° daily means
of observations over the South Atlantic and the South East Pacific from 2004 to 2019. The sources
are given in Table 1.

Table 1: Sources of satellite observations

Product Name Description
Mean Droplet Radius (r.) MODIS (1.6, 2.1, 3.7 pm channels) [15]
Precipitation NOAA CMORPH CDR [17]

Sea Surface Temperature (SST)
Lower Tropospheric Stability (LTS)
Vertical Motion at 500 mb (w500)
Estimated Inversion Strength (EIS)
Relative Humidity at x mb (RHx)
Aerosol Optical Depth (AOD)

NOAA WHOI CDR [18]
MERRA-2 [16]
MERRA-2 [19]
MERRA-2 [16, 20]
MERRA-2 [16]
MERRA-2 [16]

We restrict our observations to clouds in the “aerosol limited” regime by applying some filtering [21].
In “aerosol limited” regimes, we assume that cloud development is limited by the availability of
cloud-condensation nuclei, and thus aerosol. Our choice of filtering is informed by domain knowledge.
CWP are filtered to values below 250um and r, to values below 30um. AOD values are filtered, only
keeping values between 0.03 and 0.3. We also filter out precipitating clouds to avoid a loop in the
causal graph. Finally, all features are normalized before being fed into the model.

C Model architecture

The models are neural-network architectures with two components: a feature extractor ¢(x; #) and
a density estimator f(¢,t; ), represented in Appendix C. The covariates x are given as input to
the feature extractor, whose output is concatenated with the treatment t and given as input to the
density estimator which outputs a Gaussian mixture density, p(y | t, x, 8), from which we can sample.
The feature extractor uses attention mechanisms to model the spatio-temporal correlations between
the covariates on a given day using the geographical coordinates of the observations. The model
architecture is represented in Figure 4.
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Figure 4: Overcast model architecture. The inputs are represented by circles, in blue the covariates,
in grey the spatio-temporal coordinates, in purple the treatment. In the red circle is the output of the
model, the outcomes distribution. The model has a feature extractor in and a density estimator

(in ).

D Implementation details

We follow the implementation from [4]. The code is written in python. The packages used include
PyTorch [22], scikit-learn [23], Ray [24], NumPy, SciPy and Matplotlib.

We use ray tune [25] with HyperBand Bayesian Optimization [26] search algorithm to optimise our
network hyper-parameters. The hyper-parameters considered during tuning are given in [4]. The final
hyper-parameters for each dataset are given in Table 2. The hyper-parameter optimization objective
is the batch-wise Pearson correlation averaged across all outcomes on the validation data for a single
dataset realization with random seed 1331.

We split the data into training, validation, and testing sets across different days. [4] splits data in the
following way: datapoints from Mondays to Fridays are in the training set, from Saturdays in the
validation set, and from Sundays in the testing set. In our implementation, we keep the same ratio
between datasets but we randomize the splits, using random seed 42 and having 5/7 of the data in
the training set, 1/7 in the validation set, and 1/7 in the testing set. The randomization is motivated
by the fact that there is a clear weekly cycle of aerosol optical depth [27]. Models are optimized by
maximizing the log likelihood of p(y | t,x, 6).

Table 2: Final hyper-parameters for each dataset and model

Hyper-parameter South-East Pacific =~ South Atlantic

Hidden Units 128 128
Network Depth 3 4
GMM T Components 27 7
GMM Y Components 22 24
Attention Heads 8 8
Negative Slope 0.28 0.19
Dropout Rate 0.42 0.16
Layer Norm False True
Batch Size 128 160
Learning Rate 0.0001 0.0001
Epochs 500 500
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