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Abstract

Despite the importance of quantifying how the spatial patterns of extreme pre-
cipitation will change with warming, we lack tools to objectively analyze the
storm-scale outputs of modern climate models. To address this gap, we develop an
unsupervised machine learning framework to quantify how storm dynamics affect
precipitation extremes and their changes without sacrificing spatial information.
Over a wide range of precipitation quantiles, we find that the spatial patterns of
extreme precipitation changes are dominated by spatial shifts in storm regimes
rather than intrinsic changes in how these storm regimes produce precipitation.

1 Introduction: Understanding the Changing Spatial Patterns of
Precipitation Extremes

According to the latest IPCC report [11], “ there is high confidence that extreme precipitation events
across the globe will increase in both intensity and frequency with global warming”. As the severity
of storms and tropical cyclones magnifies, there will be associated increases in flood-related risk [13]
and challenges in water management [2, 3]. To first order, heavy precipitation extremes are limited
by the water vapor holding capacity of the atmosphere, which increases by about 7% per 1K (Kelvin)
of warming following an approximate Clausius-Clapeyron scaling [24]. This is referred to as the
“thermodynamic contribution” to extreme precipitation changes [12] and gives a solid theoretical
foundation for spatially-averaged changes in precipitation extremes.

Yet climate change adaptation requires knowledge of how precipitation extremes will change at
the local scale, i.e., understanding the changing spatial patterns of precipitation extremes under
warming. Focusing on the tropics, where most of the vulnerable world population lives [10], these
changing spatial patterns are primarily dictated by atmospheric vertical velocity (“dynamical”)
changes because horizontal spatial gradients in temperatures are weak. This is referred to as the
“dynamic contribution” to extreme precipitation changes [12].

A comprehensive understanding of this “dynamic contribution” remains elusive. Approximate
scalings can be derived based on quasi-geostrophic dynamics [18, 23] and convective storm dynam-
ics [22, 1]. But actionable findings require Earth-like simulations of the present and future climates
(e.g., [25]), which can resolve regional circulation changes and their effects on storms in their full com-
plexity. These simulations are computationally demanding and output large amounts of multi-scale,
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three-dimensional data that challenge traditional data analysis tools. For example, the state-of-the-art
high-resolution1, SPCAM (Super Parameterized Community Atmospheric Model, [15, 16]) simu-
lations we will use in this study (SI-A) output 3.4 Terabytes of data, with 76,944,384 samples of
precipitation and the corresponding storm-scale vertical velocity fields (see Fig 1 for examples).
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Figure 1: Selected vertical velocity fields from our Control (0K, a-d) and Warmed (+4K, e-h) SPCAM
simulations. By sampling the precipitation distribution, we show instances of vertical velocity fields
associated with no precipitation (a, e), drizzle (b, f), heavy rainfall (c, g), and intense storms (d, h).

To facilitate the interpretation of extreme precipitation changes without sacrificing the details of storm
formation, this paper proposes to (1) objectively cluster vertical velocity fields into N interpretable
regimes via unsupervised machine learning. We define the probability of a regime of convection
at a given geographic location as π. This discretization of regimes of convection through machine
learning allows us to (2) quantitatively understand changes in precipitation extremes (Pextreme) from
changes in convection regime dynamics and probability. Here we define Pextreme as a fixed high
quantile of precipitation (e.g., 95th percentile) at a given spatial location. To model the effects of
climate change, we define ∆Pextreme as its absolute change from the Control to the Warmed climate,
and show in SI-B that relative changes in precipitation extremes can be decomposed as follows:

∆Pextreme

Pextreme
=

Thermodynamic︷ ︸︸ ︷
∆qsat
qsat︸ ︷︷ ︸

From theory

+

Dynamic︷ ︸︸ ︷
qsat

Pextreme︸ ︷︷ ︸
From current climate

∆D0 +

N∑
i=1

∆πiDi︸ ︷︷ ︸
Regime prob. shifts

+

N∑
i=1

πi∆Di︸ ︷︷ ︸
Intra−regime changes


(1)

Eq. 1 shows that relative changes in Pextreme are the sum of a well-understood, spatially-uniform
“thermodynamic” increase in saturation specific humidity (qsat – see Eq. 7), and a spatially-varying
term, which is the sum of N regime probability shifts (changes in our unsupervised machine learning
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derived convection cluster assignments ∆πi – covered in more detail in Section 2) and N changes in
regime dynamics (changes in the “dynamic contribution” pre-factors ∆Di, in precipitation units).

Our simulation data already contain Pextreme and qsat, and we can derive πi from our unsupervised
learning framework, giving us all the information we need to calculate the elusive pre-factors Di and
their change with warming. Using equation 5, we linearly regress Pextreme

qsat
on the regime frequencies

πi in both the reference and warm climates to derive the pre-factors Di, which are the weights of the
multiple linear regression. This is a step toward understanding how the spatial patterns of storm-scale
dynamical changes, which are notably hard to analyze, can affect the spatial patterns of extreme
precipitation. Understanding these changes is critical to trust local climate change predictions.

2 Machine Learning Methods: Variational Autoencoder With Clustering

Figure 2: The VAE architecture used in this paper. Given a vertical velocity field w, the VAE
non-linearly reduces the input dimension to yield a latent representation z. Based on z, the VAE is
trained to reconstruct w. The latent representation z then allows us to cluster w into N interpretable
regimes.

To objectively extract interpretable dynamical knowledge, we rely on fully-convolutional Variational
Autoencoders (VAEs) to learn low dimensional latent representations of the vertical velocity details.
We use the VAE’s encoder to non-linearly reduce the full 2D fields to a tractable representation of
the dynamical information while preserving physical coherence (SI-C/D – the VAE’s training and
benchmarking). The evaluation of regime probability shifts is done in three steps.

First, after training a VAE on the warmed (+4K) climate, we follow the K-means clustering approach
(SI-E) to organize the complex vertical velocity dynamics into three distinct regimes. This can be
generalized to N ∈ N∗ regimes: (1) Marine Shallow Convection, (2) Continental Shallow Cumulus
Convection, and (3) Deep Convection. For each regime i, we compute cluster assignments in the
warmed climate (with corresponding probabilities π4K

i ), and save the cluster centers. Second, we
encode vertical velocity fields from the Control climate (0K) using the same encoder and compute
the new cluster assignments (with corresponding probabilities π0K

i ) using the saved cluster centers
from the reference climate. Third, we compute cluster assignment differences for each regime as
∆πi = π4K

i − π0K
i , which can then be used as proxies for dynamical regime shifts.

3 Results

3.1. Unsupervised Machine Learning Reveals Convective Responses to Climate Change Fig-
ure 3 shows the probability shifts ∆πi from the Control to the Warmed climate. The dominant
climate change signal captured by our unsupervised framework is the increased geographic concen-
tration of deep convection (3c). More specifically, deep convection becomes more frequent over
warm ocean waters and especially the Pacific Warm Pool [4] while shallow convection becomes
less common in these unstable regions (3a). This result is consistent with observational trends
showing an intensification of already powerful storms over the warm tropical waters thanks to greater
moisture convergence [4] (SI-F). The agreement between the unsupervised ∆π1 of deep convection
and extreme precipitation changes (3d) motivates further investigation.
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(a) Marine Shallow Convection (e) Mean change in 95th % Precip.

(b) Continental Shallow Convection (f) Spatial Pattern of change in 95th % Precip.

(c) Deep Convection (g) Deep Convection Regime Shifts

(d) Total change in 95th % Precip. (h) Changes in Deep Convection Dynamics

0.2

0.1

0.0

0.1

0.2
Pr

ob
ab

ili
ty

 C
ha

ng
e

25
0

25

m
m

/d
ay 20

10

0

10

20

m
m

/d
ay

Shifts from 0K Control Climate to +4K Warmed Climate

Figure 3: Changes induced by +4◦C of simulated global warming: The patterns of storms change
(a-c), which changes the patterns of extreme precipitation (f), mostly because deep convective
storms shift location (g). Panels (a-c) display probability shifts in the three dynamical regimes found
through clustering with N = 3, corresponding to (a) “marine shallow”, (b) “continental shallow
cumulus”, and (c) “deep” convection. We subtract the spatial-mean change (e, the “thermodynamics”)
from the total change (d) to yield the “dynamic” contribution (f). Using Eq. 1, we decompose the
changing spatial patterns (f) into five terms, including (g) probability changes in deep convection, (h)
changes in deep convective precipitation, and three additional terms depicted in Figure 9.

3.2. Decomposing the Dynamic Contribution to Extreme Precipitation Changes We go one step
further by decomposing the spatial patterns (3d) into changes in regime probability πi and changes
in regime dynamics Di. Unlike traditional approaches that spatially average information, we use a
fully-convolutional encoder and latent space clustering to leverage storm-scale variability.

We calculated changes in regime probability in section 2, so we must now calculate changes in regime
dynamics, which involves the following two steps. First, we empirically estimate Di by using the
probabilities of deep and shallow convection2, and depict the results across precipitation percentiles in
Figure 7. D1 and D2 are positive and increase with precipitation quantile, which is reassuring because
precipitation is positive. Second, we estimate changes in “deep” and “shallow” convection dynamics
as ∆Di = D4K

i − D0K
i . With just the information of the regime probabilities, we can model the

spatial patterns of precipitation changes at upper percentiles (Figure 6). Our model becomes less
accurate at lower precipitation quantiles because we are not using specific humidity information (the
approximation of Eq. 3 is only valid for high precipitation quantiles).

Our model can now be used to better understand the drivers of extreme precipitation changes
themselves. We hone in on just deep convection, the regime most closely associated with extreme
precipitation in the tropics, and ask: Did the patterns of extreme precipitation simply follow the
changing patterns of deep convection, or are there more complex changes in how deep convection
produces rain? We address this question by comparing the rate of change in deep convection
probability (∆π1

π1
) against the rate of change in the deep convection Dynamical Prefactor (∆D1

D1
) in

Figure 8. In high precipitation quantiles where our model works best, extreme changes are dominated
by regime probability shifts (Figure 3f) rather than by intra-regime changes (3g): (Figure 6): ∆D1

D1
<

∆π1

π1

3. This means that the spatial patterns of extreme precipitation changes are dominated by the
changing patterns of storm dynamics identified by our unsupervised framework, suggesting that
unsupervised learning could play a broader role in leveraging storm-scale climate information to
deepen our understanding of extreme events.

2More specifically, we estimate the dynamical pre-factors (Di) by regressing Pextreme
qsat

on π1 and π2,
neglecting the “Continental Shallow Cumulus” regime as it concentrates over arid continental zones with high
lower tropospheric stability and low latent heat fluxes, making conditions unfavorable for precipitation [9]

3Note that at precipitation quantiles larger than 0.99, we lack samples for the analysis to work properly as
evidenced by the pixelation of the changing patterns in Figure 5
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Supplemental Information

A. Data: High-resolution, Earth-like Simulations of Global Surface Warming

We will now cover the Multi-Model Framework (MMF) in more detail. The MMF used to generate
our training and test data is composed of small, locally periodic 2D subdomains of explicit high-
resolution physics that are embedded within each grid column of a coarser resolution (1.9◦ × 2.5◦

degree) host planetary circulation model [16]. In total, we performed six simulations of present-day
climate launched from different initial conditions (but consistent resolution) using the MMF [26],
configured with storm resolving models that are 512 km in physical extent, each with 128 grid
columns spaced 4 km apart. We use a scheme with thirty vertical levels to represent the atmosphere.
We then perform an additional six simulations but increase the sea surface temperatures by 4K.

We compare the Control simulations against those with uniform increases in sea surface temperatures
("Warmed"). For our purposes, this creates a testbed that can serve as a proxy for climate change,
which we can better understand by examining spatial and intensity shifts between the turbulent
updrafts within the two SPCAM climates. However, we acknowledge that surface warming is only an
approximation for the thermodynamic consequences of CO2 concentration increase.

To investigate the “dynamic mode” of precipitation, we choose vertical velocity to represent the state
of the atmosphere. These vertical velocity fields contain information about complex updraft and
gravity wave dynamics across multiple scales and phenomena. We considered the entire 15S-15N
latitude band containing diverse tropical convective regimes. Examples of these vertical velocity
snapshots, selected by precipitation percentile, can be seen in Figure 1

B. Precipitation Extremes Decomposition

This appendix derives Eq. 1 by making a series of simple physical assumptions about precipitation.
Note that while these assumptions help give physical meaning to each term of Eq. 1, Eq. 1 could also
be derived by decomposing the extreme precipitation field into its spatial-average and an anomaly,
before further decomposing the anomaly using the objectively-identified dynamical regimes. This
means that the assumptions made in this section only need to approximately hold to physically
interpret the results of our decomposition.

To first order, precipitation (P ) scales like condensation rate, which depends on the full vertical
velocity (w) and atmospheric water vapor (here quantified using specific humidity q) fields:

P ≈ P (w, q) . (2)

Note that Eq. 2 neglects the dependence on microphysical processes (see e.g., [21]) to focus on
the thermodynamical and dynamical components of precipitation. When focusing on extreme
precipitation, we de facto sample atmospheric columns that are so humid that the specific humidity q
equals its saturation value qsat. This allows us to further simplify Eq. 2 in the case of precipitation
extremes (high quantiles of P ):

Pextreme ≈ Pextreme (w, qsat) . (3)

We now make the assumption that the thermodynamic dependence on qsat can be factored out of the
right-hand side of Eq. 3 and denote the dynamical pre-factor as D (w):

Pextreme ≈ qsat ×D (w) . (4)

The previous assumption can be justified quickly by assuming a moist adiabatic temperature profile
and a vertically-uniform vertical velocity profile for extreme events [24, 22]. It can also be justified
more accurately by noting that such vertical velocity profiles collapse when changing the vertical
coordinate from pressure to the normalized integral of the moisture lapse rate [1]. We can now linearly
decompose the dynamical pre-factor D (w) into the N regimes identified by our unsupervised learning
framework:
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D (w) ≈ D0 +

N∑
i=1

πiDi, (5)

where πi is the probability of each dynamical regime. Combining Eq.’s 4, 5, and taking a logarithmic
derivative with respect to climate change allows us to decompose relative changes in extreme
precipitation as follows:

∆Pextreme

Pextreme
≈ ∆qsat

qsat
+

∆
(
D0 +

∑N
i=1 πiDi

)
D0 +

∑N
i=1 πiDi

, (6)

where ∆ denotes absolute changes from the reference to the warm climate. Lastly, we approximate
the thermodynamic contribution to precipitation extremes as the relative changes in near-surface
saturation specific humidity, which can be further approximated as spatially uniform:

qsat = qsat (Ts, ps) ⇒
∆qsat
qsat

≈ 7%, (7)

where Ts is near-surface temperature and ps near-surface pressure. Expanding Eq. 6 and substituting
D (w) using Eq. 4 yields Eq. 1.

C. VAE Training

Our machine learning methodology objectively defines dynamical regimes from millions of two-
dimensional vertical velocity fields, for which we proceed with the creation of a latent manifold to
ensure the local correlations in the updrafts of our vertical velocity fields are preserved. For this, we
rely on a fully convolutional VAE design, whose architecture is depicted in Figure 2. To train the
VAE, we perform beta-annealing [14, 6], expanding the Evidence Lower Bound (ELBO) traditionally
used to train the VAE by including a β parameter and linearly anneal β from 0 to one over 1600
training epochs. The number of layers and channels in the encoder and decoder are depicted in
Figure 2 (4 layers in each, stride of two). We use ReLUs as activation functions in both the encoder
and the decoder. We pick a relatively small kernel size of 3 in order to preserve the small-scale
updrafts and downdrafts of our vertical velocity fields. The dimension of our latent space is 1000.

D. VAE Benchmarking and Performance Evaluation

We train our VAE on 160,000 unique vertical velocity fields and use an additional 125,000 samples
to validate and optimize the model hyperparameters. Finally, we leverage 1,000,000 vertical velocity
fields in the testing dataset for robust analysis. The high count in the test dataset is necessary both
due to the high spatio-temporal correlations common in meteorological data but also because of the
geographic conditioning in our analysis – we need enough samples at each lat/lon grid cell not just
globally.

To determine whether our data are nonlinear enough to warrant the use of a VAE we also train a
baseline model of the same architecture but with all activation functions replaced by “linear”. This
“linear” baseline provides an important benchmark for the credibility of our VAE and machine learning
analysis workflow more broadly. The fact that the VAE reconstructs the vertical velocity snapshots
with both lower error and a higher degree of structural similarity suggests significant non-linearity is
involved in compressing and rebuilding the 2D fields (Table 1 and Table 2). This problem is therefore
well suited to the non-linear dimensionality reduction of the VAE encoder and less so for linear
models.

Tables 1 and Table 2 show 160,000 is enough training samples to create reconstructions of high-
resolution vertical velocity fields with both a low MSE and a high degree of overall structural
similarity. Though there is a small amount of overfitting, we see that performance remains strong
for a test dataset containing multiple species of convection from all parts of the tropics ranging from
deserts to rainforests; oceans to continents. Furthermore, what we are most concerned with is not the
reconstruction quality itself, but the interpretability of the latent space for clustering.
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Mean Squared Error m2/s2

Model Training Set Validation Set Test Set
VAE 3.79 ∗ 10−4 1.11 ∗ 10−3 3.33 ∗ 10−3

Linear Baseline 3.10 ∗ 10−3 4.70 ∗ 10−3 5.10 ∗ 10−2

Table 1: The MSE of both of our models (“linear” baseline and VAE) calculated across train-
ing/validation/test data. For both training and test data, we see low reconstruction errors, suggesting
satisfactory skill and generalization ability. Overall, the VAE outperforms the “linear” baseline.

Structural Similarity Index Metric
Model Training Set Validation Set Test Set
VAE 0.998 0.995 0.987

Linear Baseline 0.990 0.986 0.981
Table 2: The mean SSIM [28] of both of our models (“linear” baseline and VAE) across train-
ing/validation/test data. The models both generalize well to our test data. Again, the VAE outperforms
the “linear” baseline.

E. K-Means Clustering Approach

We apply the K-Means Clustering algorithm to partition the latent space of our VAE and analyze which
physical properties can be clustered in this reduced order z space. This approach first randomly assigns
centroids, C, to locations in the z space (note we actually use the more modern k++ algorithm [5]
to maximize the initial distances between the centroids). Latent representations of each sample
zi, in the test dataset of size N , are assigned to their nearest centroid. The second stage of the
algorithm moves the centroid to the mean of the assigned cluster. The process repeats until the sum
of the square distances (or the Inertia, I) between the latent space data points and the centroids are
minimized [19, 20] such that:

I
def
=

N∑
i=0

min
l∈C

||zi − z̄l||2, (8)

in which z̄l is the mean of the given samples belonging to a cluster l for the total number of cluster
centers C. We always calculate ten different K-means initializations and then select the initialization
with the lowest inertia. This process allows us to derive the three data-driven convection regimes
within SPCAM highlighted in Figure 3.

We qualitatively choose an optimal number of cluster centroids (centers), k by incorporating domain
knowledge rather than a traditional approach relying on the rate of decrease in I as k increases
or a single quantitative value such as a Silhouette Coefficient [27] or Davies-Bouldin Index [7].
More specifically, we identify the maximum number of “unique clusters”. We define a “unique
cluster” of convection as a group in the latent space where the typical physical properties (vertical
structure, intensity, and geographic domain) of the vertical velocity fields are not similar to the
physical properties of another group elsewhere in the latent space. Empirically this exercise enables
us to create three unique regimes of convection (Figure 3). When we increase k above three, we get
sub-groups of “Deep Convection” without differences in either vertical mode, intensity, or geography.
Thus we don’t consider N > 3 to be physically meaningful for our purposes.

Because we seek to contrast common clusters between different climates, we do not use Agglom-
erative (hierarchical) Clustering unlike other recent works that cluster compressed representations
of clouds from machine learning models [8, 17]. Using the K-means approach, we can save the
cluster centroids at the end of the algorithm. This provides a basis for cluster assignments for latent
representations of out-of-sample test datasets when we use a common encoder as in Section B. More
specifically, we only use the cluster centroids to get label assignments in other latent representations.
We don’t move the cluster centroids themselves once they have been optimized on the original test
dataset (the second part of the K-means algorithm). Keeping the center of the clusters the same
between different types of test data ensures we can objectively contrast cluster differences through
the lens of the common latent space.
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F. Understanding Convection via Vertical Structure

To better understand the physical properties embedded within a latent space cluster, we use vertical
velocity moments as summary statistics. We construct summary vertical profiles, grounded on the
principle that for convection the vertical (v) dimension will be far more important than the horizontal
(h) dimension for highlighting key physics. We derive the first-moment statistic:

w′w′
i
def
=

√
(Wi − W̄i,h)2, (9)

where W̄i,h is the mean of the vertical velocity field upon averaging out the horizontal dimension. We
can average these statistics across a cluster to approximate the convective structures organized within.
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Figure 4: A comprehensive view of the vertical structure of each type of convection in SPCAM and
how it changes as temperatures rise (solid vs. dashed lines). But instead of only restricting ourselves
to a view of the mean, we look at percentiles across the test data in each convection cluster. The VAE
anticipates both an increase in the most intense deep convection with warming (b) and strengthening
of turbulent updrafts in the boundary layer (c).
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Figure 5: The shifts in different percentiles of precipitation with global warming, where we again
stratified and plotted the data by latitude/longitude grid cell. As in Figure 3d we again remove
the mean to highlight the dynamical pattern and see at what threshold the alignment with the VAE
identified Deep Convection shifts (Figure 3c) is greatest. The top percentiles including (f-h) are
pixelated because of a lack of samples that are out on the tail of the PDF.
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Figure 6: The simple results of the simple regression model we use to predict extreme precipitation
patterns (Pextrmeme

qsat ) using just the dynamic contributions, πDeep Convection and πShallow Convection

identified by our unsupervised ML framework. We see our model works very well for high precipi-
tation percentiles where the dynamic contributions are greatest and less well for lower percentiles
where thermodynamics are also important.
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Figure 7: The breakdown of components of our simple model at different precipitation percentiles.
We see the approximated Dynamical Prefactors D are positive and increase for extreme precipitation
percentiles mirroring the expected greater dynamic contribution responsible for heavy rain and
tropical cyclones. We also plot the intercept ∆D0 for additional context.
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of Deep Convection ∆D
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π . This indicates that regime shifts dominate the precipitation
extreme changes (patterns).
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Figure 9: From Eq. 1, we can decompose the changing spatial patterns (Figure 3f) into five terms,
including probability changes in shallow convection (a), changes in deep convective precipitation (b),
and the intercept of Dynamical Prefactor (c).

14


	Introduction: Understanding the Changing Spatial Patterns of Precipitation Extremes
	Machine Learning Methods: Variational Autoencoder With Clustering 
	Results

