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Abstract

The precipitation video datasets have distinctive meteorological patterns
where a mass of fluid moves in a particular direction across the entire frames,
and each local area of the fluid has an individual life cycle from initiation to
maturation to decay. This paper proposes a novel transformer-based model
for precipitation nowcasting that can extract global and local dynamics
within meteorological characteristics. The experimental results show our
model achieves state-of-the-art performances on the precipitation nowcasting
benchmark.

1 Introduction

Climate change has induced heavy downpours in many parts of the globe, causing significant
damage to society [II, 2 [3] [4, 5, [6]. Therefore, predicting short-term precipitation changes
in advance is becoming important and has received increasing interest from researchers
[7,[8,[9,[10]. Precipitation nowcasting predicts precipitation changes within 6 hours, predicting
and responding to rapid changes in real time [2] 6], 11}, [12].

Deep learning-based precipitation nowcasting tasks are defined to predict future precipitation
conditions using satellite videos or radar measurements. Many previous models leverage
the architecture of video prediction, a similar task to nowcasting, focusing on exploiting
spatial and temporal information by applying convolutional layers and transformer blocks
[5, @) [10l 11l [13], [14]. However, precipitation data have unique characteristics that differ
from common video prediction benchmarks. The general video has a moving specific rigid
body with a stationary background [15] [16l [17], whereas the precipitation video features
a fluid mass spreading in a particular direction. Furthermore, each area of the fluid has
an individual life cycle from initiation to maturation to decay; that is, the intensity of
the moving fluid changes continuously [I§]. Therefore, a precipitation nowcasting model
reflecting meteorological patterns is required.

In this paper, we propose a novel transformer-based model for precipitation nowcasting,
which can extract global and local dynamics within meteorological characteristics. The
global dynamic attention module can extract global spatial features from the frames so that
the model can predict long-term future frames with high accuracy, while locally extracted
temporal relationships from the local dynamic attention module help the model learn how
the intensity of fluids changes at each point in the frames. Our proposed model shows the
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Figure 1: (a) Overall framework of Nowformer. (b) Nowformer block. (c-e) The variants of
the local dynamic strategies, which are named TAUlocal, gridP, and 1dP.

best performance compared with other state-of-the-art video prediction and precipitation
nowcasting models in the SEVIR precipitation nowcasting benchmark [2].

2 Methodology

2.1 Overall Pipeline

We formulate precipitation nowcasting as a spatiotemporal predictive learning problem.
Given past T frames of precipitation, the model predicts the future T” frames. As shown in
Fig. [1| (a), the overall structure of the nowformer contains an encoder, nowformer blocks, and
a decoder. The encoder and decoder comprise convolutional blocks that extract features and
map features to predictions. The nowformer block captures spatiotemporal patterns from
frame features, as detailed in Section 2.2. After the nowformer block, an additional residual
connection from the encoder to the decoder layer is applied to directly use the past frame
information. We train the nowformer using the mean squared error (MSE) loss between the
predicted precipitation frames and its target.

2.2 Nowformer Block

Each nowformer block has two subblocks of spatiotemporal attention and multi-layer per-
ceptron (MLP) 20]. As shown in Fig. [1} the nowformer block module is formulated as
follows:

Z, =MLP(BN(Z]))+ Z], Z| = Attention(BN(Z;_1))+ Z;_1, (1)

where, given the previous block features Z;_; as an input of the [ — th block, Z] and Z; are
the outputs of the Attention module and MLP module, respectively. Through the attention
module, the model can capture the fluid’s average flow direction and variations in intensity
based on the fluid’s life cycle in each area. Batch normalization (BN) is used before each
subblock, and a residual connection is used after each subblock.

Attention. To capture the spatiotemporal pattern of precipitation features, we build the
attention block with two core designs: (1) global dynamic attention (GlobalDynamicAttn
and (2) local dynamic attention (LocalDynamicAttn), which is

Attention = (GlobalDynamicAttn ® LocalDynamicAttn) ® F, (2)

where F € REXH*W ig an input feature and GlobalDynamicAttn,LocalDynamicAttn €
REXHXW denote an attention map, respectively. The score on the attention map represents
the importance of each feature, and ® denotes the Hadamard product.



Global Dynamic Attention. For long-term future predictions and rapidly changing
precipitation events such as storms, it is important to capture global spatial relationships
to guide the model on where fluid moves [5]. Inspired by previous studies |21, [13], we also
apply large kernel convolutions in global dynamic attention to generate a broad receptive
field and mine global spatial relationships with long-range dependencies The global dynamic
attention calculation is formulated as follows:

GlobalDynamicAttn = Convyx1 (DW DConv(DW Conv(F)). (3)

We apply 3 x 3 depthwise convolution (DWConv) to extract local spatial information,
depthwise dilated separable convolution (DW DConv) to generate long-range spatial features,
and 1 x 1 convolution (Convyx1) to model the temporal-wise convolution at a pixel level.
Our global dynamic attention allows the model to learn the movement of fluids captured
from the global view while using only at a minimum computational cost.

Local Dynamic Attention. When performing precipitation nowcasting focusing on global
temporal evolution, a key issue is that valuable precipitation life-cycle details in local areas
are removed, making the prediction results less accurate. Since neighboring pixels are crucial
references that commonly share a life-cycle, we suggest temporal dynamics modeling across
the local area. Specifically, as shown in Fig. c—e), we propose three different local dynamic
attention strategies to fully capture local temporal evolution: (1) TAUlocal, (2) grid pooler
(gridP), and (3) local dynamic pooler (1dP).

TAUlocal learns the local dynamics in a squeeze-and-excitation manner through the grid on
the feature maps. We first split the features into grids and apply an average pooling layer in
each grid to capture the average movement of the local area. Finally, MLP is applied within
the common grid area to capture local temporal evolution.

gridP is a simple but powerful module. We split the features into grids and apply an average
pooling layer in each grid to capture the average movements of the local area at each time
point; we then use the normalized local information directly as attention weights.

1dP focuses on temporal gradients. We first average gridP weights across time to cap-
ture average temporal movement and calculate the temporal gradient of gridP by simply
subtracting gridP weights from average temporal movement.

3 Experiments

3.1 Experimental Setup

Dataset. A storm event imagery dataset (SEVIR) [2] offers radar and satellite images for
various weather conditions. We adopt the vertically integrated liquid (VIL) data, comprising
a sequence of images taken at intervals of 5 minutes, each one spanning a 384 km x 384 km
region. The goal of the nowcasting task is to predict the precipitation for the following 12
frames (1 hour) using the previous 13 frames (about 1 hour) as input.

Evaluation metrics. We use the two commonly-used precipitation nowcasting evaluation
metrics and two image quality metrics to evaluate the performance: the critical success index

-~ #Hit s . o #Hit
(CSI = #Hits+#Mz.sse’Si#F.Alarms) [2], probability of detection (POD = —#H“H#&isses) 12,

mean absolute error (MAE), and MSE. When the pixel values of the target and prediction are
binarized as a threshold value, the number of pixels with target=prediction=1 is “# Hits”, and
target=1, prediction=0 is “# Misses”, conversely, target=0, prediction=1 is “#F.Alarms”.
CSI-N and POD-N indicate that the threshold value of each metric is N.

3.2 Experimental Results

The experimental results are summarized in Table|l} All three modules, TAUlocal, gridP, and
1dP showed better performances than the baselines in CSI, POD, MAE, and MSE. Moreover,
when considering the number of parameters and GFLOPs, our models are comparable with
other methods in terms of complexity, showing efficiency and scalability. The performance
measured per frame is shown in Fig. [2] and we can verify that our methods outperformed
baseline models for all frames as well as average scores. Better performances at all frames



Table 1: Comparison of our methods with baselines on several metrics.

Metrics
Model | Param. (M) | GFLOPs | CSI-74 CSL-133 | POD-74 POD-133 | MAE/ | MSE(1072) |
Persistence - - 0.4766 0.4500 0.6072 0.5814 23.60 35.81
UNet [22] 4.14 4.79 0.6201 0.5820 0.7013 0.6547 21.67 24.48
Rainformer [5] 212.40 50.89 0.6340  0.6055 0.7559 0.7209 20.57 23.79
SimVP [14] 14.03 74.01 0.6507 0.6207 0.7583 0.7231 19.65 23.67
TAU [13] 11.25 55.55 0.6453  0.6152 0.7543 0.7180 19.32 22.20
Nowformer w/ TAUlocal 10.78 55.56 0.6457 0.6183 0.7861 0.7461 19.95 21.30
Nowformer w/ gridP. 10.53 55.56 0.6551  0.6309 | 0.8091 0.7786 20.37 22.51
Nowformer w/ 1dP. 10.53 55.56 0.6592 0.6331 0.7881 0.7567 18.91 21.22
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Figure 2: Performance over lead times.

indicate that it is important to observe locality simultaneously when considering the temporal
relationships. Particularly, the performance gap is widening when predicting frames in the
further future, indicating that the nowformer is stabler than other models. More detailed
results, including visualization, are denoted in the appendix.

4 Application Context

Our methods are easy to apply wherever data exist since the proposed methods are data-
based approaches that do not require complex physical formulas or dynamic models. Thus,
our studies are applicable without domain expert knowledge or expensive computation. The
performance can be further improved or adapted in the future by leveraging data that will
continue to accumulate. The proposed methodology does not work only for specific data,
although our methods used only VIL images from ground radar For instance, our methods
can use data from satellites, various sensors, and weather stations. Thus, our methods work
universally without relying only on specific data, suggesting the possibility that they could
solve more varied tasks related to climate change, such as cyclone intensity prediction or
hail storms [2] 23] 24]

5 Conclusion

We have proposed the nowformer, a locally enhanced temporal learner for precipitation now-
casting. We devise methods to provide an appropriate attention technique for precipitation
data by using global dynamic attention and local dynamic attention. We experimentally
demonstrate the superiority of the nowformer on the SEVIR dataset, one of the benchmark
datasets for precipitation nowcasting, compared with other methods for video prediction and
precipitation nowcasting. Since the nowformer is designed to consider the spatiotemporal
pattern of precipitation features, we believe our methods are applicable to various data ap-
pearing in weather-related data, leading to preparing or predicting extreme climate changes,
including precipitation predictions that we mainly target.
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A Appendix

A.1 Implementation details

We use an AdamW optimizer with momentum terms of (0.9,0.999), 0.001 as the initial
learning rate, and 0.0001 as the weight decay. All models are trained with a batch size of 12
precipitation sequences for 30 epochs on a single NVIDIA-A100 GPU.

A.2 Tllustration of three local dynamic strategies
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Figure 3: Illustration of TAUlocal.
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Figure 4: Illustration of gridP.
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Figure 5: Illustration of 1dP.



A.3 Visualization
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Figure 6: Comparison of nowcasting results with other methods
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