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Abstract

Inaccuracies in the models of the Earth system, i.e., structural and parametric
model errors, lead to inaccurate climate change projections. Errors in the model
can originate from unresolved phenomena due to a low numerical resolution, as
well as misrepresentations of physical phenomena or boundaries (e.g., orography).
Therefore, such models lead to inaccurate short—term forecasts of weather and
extreme events, and more importantly, long term climate projections. While cali-
bration methods have been introduced to address for parametric uncertainties, e.g.,
by better estimation of system parameters from observations, addressing structural
uncertainties, especially in an interpretable manner, remains a major challenge.
Therefore, with increases in both the amount and frequency of observations of
the Earth system, algorithmic innovations are required to identify interpretable
representations of the model errors from observations. We introduce a flexible,
general-purpose framework to discover interpretable model errors, and show its
performance on a canonical prototype of geophysical turbulence, the two—level
quasi—geostrophic system. Accordingly, a Bayesian sparsity—promoting regression
framework is proposed, that uses a library of kernels for discovery of model errors.
As calculating the library from noisy and sparse data (e.g., from observations) using
convectional techniques leads to interpolation errors, here we use a coordinate-
based multi—layer embedding to impute the sparse observations. We demonstrate
the importance of alleviating spectral bias, and propose a random Fourier feature
layer to reduce it in the proposed embeddings, and subsequently enable an accu-
rate discovery. Our framework is demonstrated to successfully identify structural
model errors due to linear and nonlinear processes (e.g., radiation, surface friction,
advection), as well as misrepresented orography.

1 Introduction

Numerical models are the core of modern weather and climate predictions. Despite their success
in both short—term weather and long—term climate predictions, they are inundated with a slew of
heuristics, and often suffer from high uncertainties. Such uncertainties lead to a range of low
confidence estimates in the predicted state variables [1]. Current efforts in expanding the resolution
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and frequency of the observations has provided us with a unique opportunity to learn the missing
components of our models, i.e., model discrepancy, model inadequacy, or hereafter, model error.
Although [aritificial neural network (ANN){based and statistical error correction schemes have shown
great promise [2H5]], they are not interpretable, and therefore cannot be reliably used to correct climate
models.

Growing availability of observation data has provided us with a unique opportunity to learn closed—
form expressions of model errors. Such discoveries are expected to lead to generalizable correction
of operational models, which are the backbones of any actionable policies. Although algorithmic
plausibility of such frameworks are demonstrated for canonical chaotic flows [6} (7], other challenges
have to be addressed. In this paper, we focus on scaling such methods to multi—scale turbulent flows,
and representing sparse observation.

In this work, we scale MEDIDA, Model Error Discovery with Interpretability and Data—
assimilation [[7], a Bayesian regression to discover model error from a domain interpretable library
of kernels generated by learning an interpolant of observed states. Our proposed approach is based
on 3 main components, i) constructing the model error given a library of kernels, i.e., a system
identification problem, and ii) selecting a parsimonious combination of candidates for an expressive
model, i.e., a regression problem, and iii) data imputation to account for the missing observations
using a coordinate-based [multi-layer perceptron (MLP)| i.e., an [MLP}based compressed sensing
problem. Our main contributions are twofold, i) we demonstrate the use of Bayesian regression to
discover parsimonious, closed—form and interpretable model error in two-layer |quasi—geostrophic|
[QG)| system, as a simple climate model [8], and ii) we delineate spectral bias as the principle
challenge of using in modeling of turbulent flows, and propose the use of
layer to effectively embed a highly multi-scale turbulent flow for the purpose of
equation discovery in climate applications.

2 Preliminaries

Discovery of Model Error Consider a nonlinear partial differential equation (PDE)| d,w(z,t) =
g (w(x,t)), in a continuous domain, where w(x, t) is the state variable in a spatiotemporal domain.
We assume the governing operator, g (w(z,t)), is unknown. Moreover, we assume to have a
model of the truth, i.e., dyw(x,t) = f(w(z,t)). Our goal is to find an interpretable model of
error, h (w(z,t)) := g(w(z,t)) — f (w(z,t)), such that the corrected model, i.e., dyw(x,t) =
f(w(x,t)) + h (w(z,t)), can represent the true system more accurately.

By discretizing of the imperfect and perfect models in space and time, one can discover the model
error given two constitutive observations at ¢; — At and ¢;, i.e., {w°(t; — At),w°(t;)};—,. The
model is discovered as the minimizer of a regression problem, i.e.,

¢ = argmin||Aw — ® (w°) ¢, (1)

where ® (w* (¢;)) is a library of kernels representing possible and interpretable forms of model errors
(comprised of polynomials and derivatives of the state, see appendix @, and Aw = (w° (t;) —
w™ (t;))/At is the vector of model errors, stacked over many samples [7]. The regression problem
is solved using [relevance vector machines (RVMs)|[9]], a sparsity—promoting Bayesian approach [10}
11, [7]. The model error discovery of eq. ([I]) is carried over short time intervals of At, however,
we expect short time horizon correction of model errors can lead to correction of biases in climate
models [12, [13]].

Spectral bias and turbulence We train a coordinate—based as an interpolant to handle noisy
and sparse observations (for details, see section[3). The use of[ANNs|in physical sciences is implicitly
based on the assumption that the trained [ANN| represents the states as well as their higher order
derivatives, or equivalently, the spectra of the states is fully represented. Here, we demonstrate that
the multi—scale nature of turbulent flows can become a fundamental hindrance in[MLP|embedding of
the turbulent flows, and therefore contradicts the assumption. While [ANNg| are highly expressive
and can fit to any arbitrary input-output maps, in the [machine learning (ML)|community, it is also
well known that they tend to be biased towards learning low—wavenumber features of the data, a
phenomena called spectral bias [[14]. At the same time turbulent fluid flows are, by definition, multi—
scale phenomena and span over a wide range of wavenumbers. Therefore, naive embeddings of




turbulent flows lead to poor representations of the high-wavenumber features. Such features do not
significantly contribute to the most commonly used loss functions, e.g., Lo-norms, and therefore are
often dismissed when the output of a network is compared with the truth in the physical domain.

We emphasize that the discussed spectral bias has broader implications well beyond the problem that
is focus of this paper, and the remedies in section [3|has wide—ranging applications, e.g., the use of
ANNJ-based [automatic differentiation (AD)]in [6} [13]. In the context of equation discovery, that is
of interest here, the error in high wavenumbers directly affects the accuracy of the vector of model
errors and library of kernels, especially the high—order derivatives.

3 Our Proposed Method

Application of coordinate-based ie., w(x;,t;) = N (x4,1;), to embed solutions of the
PDE#| [15] in[ANNGs| has lead to many novel innovations in science and engineering. The high speed
and low cost of inference, and possibility of have made such tools increasingly attractive for
climate models. While the early developments focused on inverse problems to solve for parametric
uncertainties given measurements/observations [[16], more recently, similar architecture are used
in equation—discovery frameworks to uncover full governing equations [6, |17]], or model error [17].
In this paper, an[MLP|is trained on observed states variables. Subsequently, the trained network is
queried at the spatiotemporal location of the missing observations, to estimate the state variable at that
location, effectively constructing an interpolant. Moreover, [AD|or other methods can be leveraged
to build a library of kernels required for equation discovery (for a comparison, see appendix [D). To
alleviate the spectral bias in training of the surrogate, we employ a non—trainable [RFF layer [18].
This is especially crucial in equation—discovery of turbulent flows, which are multi—scale in nature.

4 Results

Consider the two-layer[QG]system of equations, a model of the mid-latitude baroclinic dynamics of
k k
the Earth’s atmosphere [8]], % = —aJ (Vr, qx) — 1) (V1 — o) + Gy (¥Rr) — Okaf, where

Td Td
k = 1and k = 2 represent upper and lower layers, respe(lztively. The details of the model and each of
the parameters are summarized in appendix [A] We consider a vector of parameters to represent the
system, i.e., ¢s = [o,1/74,,1/74,,1/7¢, 8], as well as the orography in fig.|la| and a linear friction
term, f = V2o /7. The imperfect model and corrected model errors are respectively measured
as €, = [lcs — cmly/||cslly and €* = ||cs — ¢*||5/]|cs]|5, Where ¢, and c* are the vectors of
coefficients in the imperfect model and the corrected model, respectively.

4.1 Discovery of Model Errors: Full data

We compare 8 different cases of parametric and structural errors as shown in Table [T Cases
1-3, and 6-8 represent model error in linear terms, cases 4 and 5 show error in the nonlinear
terms. In all cases, the proposed approach has reduced the model error significantly. Figure [Ib]
depicts an error in representation of orography. Using the proposed approach the orography is as
shown in fig. Moreover, consider a case where the friction is modeled with quadratic drag,
f = [0z (V2| Oz02) + Oy (|Viba| Oytb2)] /T¢. The proposed method successfully removes the
incorrect term and discovers the correct linear form with less than 0.1% error in 7.

4.2 Discovery of Model Errors: Sparse observation

In fig. 2] we compare an embedding without and with an layer, which is employed to
improve accuracy of embedding in a wider range of wavenumbers. The layer consequently
improves the accuracy of higher—order derivatives (figs. 2b]to [2c]), where the effect of spectral bias
is clearly more significant. The effectiveness of the proposed approach in discovery of model error
from sparse data is shown in table



Table 1: The imperfect models of the @ system corrected using the proposed method. The true
system is ¢; = [1.00,0.01,0.01,0.07,0.196]. The underscored values represent the model errors.

Imperfect model Corrected model

[avl/leul/Td271/Tf76] Em(%) [a71/7-d171/7—d271/7—f7ﬂ] 5*(%)

[1.00,0.11,0.11,0.07,0.196]  16.99 [1.00,0.01,0.01,0.07,0.196] 0.04
[1.00,0.11,0.11,0.37,0.196] 16.99 [1.00,0.010,0.010,0.072,0.196]  0.04

[1.00,0,0,0.07,0.196] 33.91  [1.00,0.01,0.01,0.072,0.196]  0.19
[0.50,0.01,0.01,0.07,0.196]  49.06  [1.00,0.01,0.01,0.07,0.196] 0.13
[0,0.11,0.11,0.37,0.196]  99.58  [1.00,0.010,0.010,0.070,0.196]  0.34

[1.00,0.01,0.01,0.37,0.196]  29.37 [1.00,0.01,0.01, 0.068, 0.196] 0.14
[1.00,0.01,0.01,0,0.196] 6.85 [1.00,0.01,0.01, 0.069, 0.196] 0.01
[1.00,0.01,0,0.07,0.196] 0.98 [1.00,0.01,0.01,0.070, 0.196] < 0.01
[1.00,0.01,0.01,0.07, 0] 19.23 [1.00,0.01,0.01,0.070,0.196] < 0.01

O 0N WUNBAWo

(a) True orography (b) Incorrect orography (c) Corrected orography

Figure 1: The orography of the true system @, and the imperfect model (]E[) Our proposed approach
successfully discovers the corrected orography as shown in .

Table 2: The imperfect model of case 2 (from Table [1)) corrected using the proposed based
interpolant in the presence of sparse observations. The sparsity, in percentage, shows the ratio of the
missing observations to full domain. The [RFF|layer enables the discovery of the model error.

Sparsity Imperfect model Corrected model
[1/7a,,1/7ay, 1/75]  em(%) [1/7a,,1/7a,,1/74] " (%)
MLPH0% 0.11,0.11, 0.37] 10 [0.11,0.117 —7.03] > 100
MLPH L0% 0.11,0.11,0.37] 10 [0.01,0.01,0.07] < 0.01
MLPHRFH-5% 0.11,0.11, 0.37] 10 [0.010 + 0.002,0.010 £ 0.002, 0.072] < 0.01
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Figure 2: Fourier spectra of the state variable (truth), classic embedding of the truth, and the
effect of the @l layer. Similarly, for the first and second order spatial derivatives (zonal direction).
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Conclusions and future work

In this paper, we proposed a framework to discover physics—based, interpretable, and closed—form
structural and parametric model errors. We demonstrated and addressed the challenge of embedding
of a turbulent flow in a coordinate-based [MLP|to impute the missing observations from sparse data.
We emphasized on alleviating spectral bias by using an[RFF layer in an equation discovery framework.
Using the proposed method, we aim to leverage the observational data to correct existing biases in
the climate models, and thus improve the confidence in the climate change projections. Future work
will extend the method to transitory regimes, and the problem of noisy sparse observations.
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A Numerical solver

In this work, we consider the two-layer [quasi—geostrophic (QG)|equations [8§]],

aqk . (71)k (71)k
B = —ad (Y, ar) — = (1 = 42) + = (Yr) = dka f @
where k = 1 and k = 2, respectively, represent upper and lower layers of atmosphere, g = V25, +

(—1)* (1 — 12) + By + SraR (,y) is the potential vorticity, 1)y, is the streamfunction. The Jacobian term is
J(Vr, qx) = %i; a%y"‘ — %iy’“ ‘98% and « is tuning parameter for the sake of our numerical experiments. 74, and

Td, are Newtonian relaxation time scale broken into two terms for the purpose of our experiments, f is a model for
drag, e.g., linear drag, f = V212 /7y, or quadratic drag [19], f = [0z (|Vtb2| Batha) + Oy (|Vab2| Byh2)] /75,
where 7y is a Rayleigh friction time scale, and for & = 2, §x2 = 1, and is zero otherwise.

The topographic/orographic features are represented in R (x, y) and acts on the lower layer. The orography is
defined as summation over Gaussian distributions centered at [mi, yz] with height of r;, and variance of of., i.e.,

Rie.p) = S (] 02). o

The[QG]equations of (Z)) are solved using the implementation by Lutsko et al. [20]. All the parameters are the
ones introduced in [20], unless otherwise stated. The non-dimensionalized zonal and meridional widths of size
L, = 46 and L, = 68 on a Fourier grid of size 96 x 192, respectively. A baroclinically unstable jet is set in the
upper layer such that 9y r /0y = sech? (y/o). A typical solution is shown in fig.
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Figure 3: A typical snapshot of potential vorticity (g).
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Figure 4: The architecture of coordinate—based used as an interpolant to impute missing
observations (baseline architecture).

B Data

The data for our experiments are reproducible from solution of| equations discussed in appendix@ To ensure
stationary turbulence, the spin—up period is dismissed (equivalent to 2500 Earth days).

C Details of the network (imputing the missing observations)

In this paper, a coordinated—based [multi-layer perceptron (MLP)|is proposed as an interpolant to impute the
missing observations. The baseline architecture is described in appendix [C.1} The[random Fourier Feature (RFF)|
layer to alleviate the effect of spectral bias is described in appendix [C.2} Both architectures are trained using the
available observations, and are queried to impute the missing observations.

C.1 Coordinate-based multi layer perceptron

The output of the faritificial neural network (ANN)|given 5™ coordinate of a spatiotemporal grid, N (u), is the
local and instantaneous state parameter, w(x;, t;), i.e.,

w(xi,t;) =N (u) = dm Wimdm-1 (Wpm_1--d1 (Wiw+b1) -+ bm_1) + bm), “)

where the input vector is the concatenation of the spatial and temporal location, i.e., u = [z, ti]—r e R,
d is the dimension of physical space, ¢; (.) is the activation function at the i"-layer, W; € Rwx(d+1)
W, € RY*% Vi€ {2,---,m — 1}, and W,, € R™" are the weights, and b; € R*,Vi € {1,--- ,m — 1},
and b,,, € R? are biases.

In this paper, the output vector is w(z;,yi, t:) = [V1(zi,yi,t:), Y2(zi, yi, t:)], the input vector is u =

[zi,yi,t:] . The network is of size n = 5, w = 1000, and d = 2. Adam optimizer is used in all the
experiments .
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Figure 5: The proposed architecture to alleviate spectral bias in embedding of turbulent flows. A
coordinate-based with an[RFF|layer used as an interpolant to impute missing observations with
features ranging a broad wavenumber spectrum (MLPHRFE).

C.2 Random Fourier Feature layer

Thel@layer alleviates the spectral bias while training by perturbing the coordinate-based input. The layer is
constructed as

v (u) = [cos (27rBTu) ,sin (27TBT’LL):| T, 5)

where each entry in B € R™*? is sampled from A/ (0, 02), and o is a hyperparameter. We assume no prior on
the frequency/wavenumber spectrum and draw samples from a Gaussian distribution. The output of the layer is
then passed through the ANN]architecture, i.e.,

w(xi,ti) = N (v (@i, t:)) - (6)

The hyperpameter is chosen such that the statistics of the output matches the target flow, implicitly assuming that
the flow has reached its statistical equilibrium, i.e., stationary turbulence. In our experiments, ¢ = 1 is shown to
reach the lowest representation error.

D Library of kernels

While statistical and radial kernels are expressive and can provide accurate models of the error [22] 5], they often
do not provide any interpretations of the missing physics.

The library consists of the candidate forms of the baroclinic-type jet, state variables and their first and second
derivatives in both zonal and meridional directions, i.e.,

P O O O o o
{wRawlaw27 oz ay "o’ ay 7v whv ¢2}7

where V2(.) := V.V/(.). The derivative of the orography as expected to appear in @), R; (z:, i),
{81/)2 OR; 0o OR; }

Oy Ox’ Oz 0Oy

Moreover, the following nonlinear terms are included,

. . g 20, ] 4
awz%,a’wlav ¢77%8V wy ,i7j€{1’2}'
Oy 0z’ 9y Ox ' Oxr Oy

Given the state variables, the derivatives in the library of kernels can be computed using any of the well-known
arbitrary differentiation approaches, e.g., spectral methods, [finite differences (FDs)| and differentiation of a
polynomial fit [23]]. MLP|embeddings of the state variables enm [24] as another
method of calculating the derivatives, where the output of the trained network can be differentiated with respect
to the input coordinates.

[AD]is often regarded as analytical approximation of the derivatives [6]], however, we emphasize that its accuracy
depends on the accuracy of the embedding. Moreover, the computational cost of [AD]can become a bottleneck,
especially in higher order derivatives [[6] and large libraries. In fig.[f] we compare the accuracy of spectral
derivative of the truth with derivatives of output of the trained [MLP|calculated using Fourier spectral, [AD} and
[FD] It can be seen that[AD] compared to the other two methods, is less accurate in high wavenumbers. Therefore,
throughout this paper, we have used Fourier spectral derivatives to calculate the kernels.
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Figure 6: Comparison of different methods of differentiation. A well—tunedlayer is used for
thgMLP|embedding of a snapshot of ¢, as the truth. The first and second order spatial derivatives
(zonal direction) are calculated using Fourier spectral derivatives,[AD] and second order central finite
difference [FD}

E Fourier spectrum of turbulent flows

To demonstrate the significance of spectral bias in coordinate-based embeddings of turbulent flows, the
Fourier spectrum of a typical photo is compared to that of a solution of equations (fig. m) The Fourier
spectra is plotted as the mean of the magnitude of zonal Fourier transform of the states, i.e., the streamfunctions
(1 and v in fig.[7H(al[b)), and the cropped frames from the natural image (in fig. [7-(c)). The solution snapshots
are of size 96 x 84 (in the jet region, see appendix [A). Similarly, the natural image is cropped to the similar
dimension of 96 x 84.

While the magnitude of the Fourier modes of the image decays O (102) over the range of the wavenumbers,
the magnitude of the Fourier modes of ; and 2 decay O (10°) over the same range of the wavenumbers.
Empirically, considering the spectral bias innate to training of it is a significantly harder task to faithfully
(in the full range of spectral domain) learn the highly multi—scale nature of turbulence compared to natural
images.
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Figure 7: Typical streamfunctions of the @ equations @-@, and a typical natural image are
compared in the Fourier domain (d). The red boxes in (c) are randomly selected and are of the same
dimensions of (al[b).
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