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Abstract

The availability of reliable, high-resolution climate and weather data is important to
inform long-term decisions on climate adaptation and mitigation and to guide rapid
responses to extreme events. Forecasting models are limited by computational
costs and therefore often can only make coarse resolution predictions. Statistical
downscaling can provide an efficient method of upsampling low-resolution data.
In this field, deep learning has been applied successfully, often using image super-
resolution methods from computer vision. Despite achieving visually compelling
results in some cases, such models often violate conservation laws when predicting
physical variables. In order to conserve important physical quantities, we developed
a deep downscaling method that guarantees physical constraints are satisfied, by
adding a renormalization layer at the end of the neural network. Furthermore, the
constrained model also improves the performance according to standard metrics.
We show the applicability of our methods across different popular architectures
and upsampling factors using ERA5 reanalysis data.

1 Introduction

Accurate modeling of weather and climate is critical for taking effective action to combat climate
change. In addition to shaping global understanding of climate change, local and regional predictions
shape adaptation decisions and provide impetus for action to reduce greenhouse gas emissions.
Predicted and observed quantities such as precipitation, wind speed, and temperature impact decisions
in fields like agriculture, energy, and transportation. While these quantities are often required at a
fine geographical and temporal scale to ensure informed decision making, most climate and weather
models are extremely computationally expensive to run, resulting in coarse-resolution predictions,
while observations are often sparsely available. Thus, there is a need for fast methods that can
generate high-resolution data based on the low-resolution models that are commonly available.

The terms downscaling in climate science and super-resolution (SR) in machine learning (ML)
refer to learning a mapping between a low-resolution (LR) input sample and a high-resolution (HR)
version of that sample. Downscaling via established statistical methods—statistical downscaling—
has been long used by the climate science community to increase the resolution of climate data
Maraun and Widmann [2018]. In parallel, computer vision SR has evolved rapidly using various
deep learning architectures, with such methods now including super-resolution convolutional neural
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networks (CNNs) Dong et al. [2016], generative adversarial models (GANs) Wang et al. [2018],
vision transformers Yang et al. [2020], and normalizing flows Lugmayr et al. [2020]. Increasing the
temporal resolution via frame interpolation is also an active area of research for video enhancement
Liu et al. [2017] that can be transferred to spatio-temporal climate data. Recently, deep learning
approaches have been applied to a variety of climate and weather datasets, covering both model
output data and observations. Climate super-resolution has mostly focused on CNNs Vandal et al.
[2017], recently shifting towards GANs Stengel et al. [2020].

Generating high-resolution data with machine learning can produce realistic-looking images and
good predictive accuracy. However, a major obstacle often encountered when applying ML to a
physical system such as the Earth’s atmosphere is that the predicted output values can violate physical
laws such as conservation of energy, momentum, and moisture. More broadly, there are numerous
domains of ML for societal benefit in which satisfaction of physical constraints is fundamentally
important. Examples include the discovery of new materials for energy and healthcare, aerodynamics
simulations for efficient vehicles, and optimal control in industrial settings.

To the best of our knowledge, there is no published work on hard-constrained ML models for
SR/downscaling, but there exist related work. In super-resolution of turbulent flows, Mesh-
freeFlowNet Jiang et al. [2020] employs a physics-informed model adding partial differential equa-
tions as regularization terms to the loss function. A preprint Geiss and Hardin [2020] introduces
an enforcement operator applied to multiple CNN architectures for scientific datasets while another
more recent preprint applies that method to atmospheric chemistry model downscaling using a CNN
Geiss et al. [2022].

In this work, we introduce a novel method to strictly enforce physical constraints between low-
resolution (input) and high-resolution (output) images. Using water content data the ERA5 reanalysis
product that describes the recent climate combining models and observations. We then build datasets
to learn the upsampling with different factors ranging from 2 up to 8 times enhancement. We
introduce a renormalization layer that is added as the last layer to any network architecture. Besides
looking at spatial SR, we also include temporal SR or frame interpolation, demonstrating that our
methodology works across all these architectures.

Our novel constraining methodology is not only applicable to SR tasks in scientific areas, but it
can also constrain neural networks for emulation and prediction. Climate model emulation tasks
as done by Beucler et al. [2021] and Harder et al. [2021] could benefit from using our constraining
layer. Within the SR domain, our work could have implications beyond scientific datasets as the
constraining methodologies can advance state-of-the-art SR more generally.

2 Enforcing Constraints

When modeling physical quantities such as precipitation or water mass, principled relationships
such as mass conservation can naturally be established between low-resolution and high-resolution
samples. Here, we introduce a new methodology to incorporate these constraints within a neural
network architecture.

2.1 Setup

Consider the case of N times downscaling and let n := N2. Let yi, i = 1, . . . , n be the values in
the predicted high-resolution data point that correspond to low-resolution pixel x. The downscal-
ing/conservation constraint is given by the following:

1

n

n∑
i=1

yi = x. (1)

As we model mass per area, conserving the mean in the SR image means conserving the overall mass.

2.2 Constraints Layer

Let ỹi, i = 1, . . . , n be the intermediate outputs of the neural network before the constraints layer. At
the end of a network architecture we take these outputs and rescale them using the corresponding
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input value x:
yj = ỹj ·

x
1
n

∑n
i=1 ỹi

. (2)

We call this operation the constraints layer (CL), which guarantees Equation 2 is satisfied and can be
added to the end of a neural network.

For predicting quantities like atmospheric water content, we also want to enforce the output to be
positive and, therefore, physically valid. Here, we use a softmax multiplied by the corresponding
input pixel value x:

yj = exp (ỹj) ·
x

1
n

∑n
i=1 exp (ỹi)

. (3)

We call this layer the softmax constraints layer (SMCL). It not only enforces our equality constraints,
but also our positivity constraints: yi ≥ 0, i = 1, . . . , n. Including the exponential function also
changes the distribution, making it more extreme/peakier, which can help with the common problem
of having too smooth predictions while optimizing the MSE.

The constraints are applied for each pair of input pixel x and the corresponding SR N ×N patch.

Figure 1: Our constraining methodology shown for one input pixel x and the softmax constraining on
the corresponding predicted 2× 2 patch for the case of 2 times upsampling.

3 Experimental Setup

We use ERA5 water content data. To obtain our high-resolution data points we extract a random
128 × 128 pixel image from each available time step (each time step is 721 × 1440 and there are
roughly 60,000 time steps available). The low-resolution counterparts are generated by average
downsampling. Our CNN network consists of convolutional layers with 3 × 3 kernels and ReLU
activations. The upsampling is done by a transpose convolution followed by residual blocks. We also
tested on different architectures like GANs and RNNs, details can be found in the supplementary
material.

Our models were trained with the Adam optimizer, learning rate of 0.001, batch size of 256 and MSE
loss between predicted SR image and true HR image. We trained for 200 epochs, which took about
3—6 hours on a single NVIDIA A100 Tensor Core GPU, depending on the architecture. All models
use the MSE as their criterion, the GAN additionally uses its discriminator loss term.

We also run experiments with the enforcement operator, introduced by Geiss and Hardin [2020],
which we refer to as G-H. Their constraining operator, tested in the context of SR CNNs only, is as
follows:

yj = ỹj + (x− 1

n

n∑
i=1

ỹi) ·
σ + ỹi

σ + 1
n

∑n
i=1 ỹi

, (4)

with σ := sign( 1n
∑n

i=1 ỹi − x).

4 Results

As standard SR metrics, we report the peak signal-to-noise ratio (PSNR) and the structural similarity
index measure (SSIM) for all our experiments. Additionally, we report how much mass conservation
is violated.
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Table 1: Metrics for different constraining methods applied to an SR CNN, calculated over 10,000
test samples. Best scores are highlighted in bold, second best in blue. The metrics shown are
PSNR/SSIM/Mass violation.

MODEL CONSTRAINT 2X 4X 8X

BICUBIC - 52.2/99.88/6.6e−2 44.3/99.29/1.7e−1 38.5/98.08/3.2e−1

SR-CNN NONE 56.0/99.94/1.5e−2 47.5/99.58/3.1e−2 40.7/98.56/6.0e−2

SR-CNN G-H 57.0/99.95/1.6e−6 47.9/99.60/1.1e−5 40.8/98.55/4.4e−6

SR-CNN CL (OURS) 56.3/99.94/8.6e−7 47.9/99.60/1.3e−6 40.5/98.48/1.2e−6

SR-CNN SMCL (OURS) 57.0/99.95/8.7e−7 47.9/99.60/1.4e−6 40.7/98.54/2.2e−6

We can see in Table 1 that for almost all cases applying constraining methodologies does not only
enforce mass conservation, but also improves both PSNR and SSIM scores. Due to numerical reasons,
the mass conservation scores vary across constraining methodologies and are not exactly zero. Overall
the predicted values have a mean value of around 20 kg

m2 , therefore the violations are relatively small
among all constraining methodologies. For predictive accuracy the G-H operator and our softmax
constraining layer perform slightly better than the simple constraining layer. In the supplementary
material results for more architecture are shown, here it shows that for the most complex model, a
simultaneous time and spatial-SR network, our SMCL methods achieves significantly better scores
than the G-H operator (see Table 4).

Figure 2: One example image chosen randomly from the test set. Shown here is the LR input, the
SMCL-constrained and unconstrained predictions and the HR image as a reference.

5 Conclusion

This work shows a novel methodology to incorporate physics-based constraints into neural network
architectures for climate downscaling. Our constrained models not only guarantee to satisfy conser-
vation laws like mass conservation or their outputs but also increase predictive performance across
different architectures.

Next steps include extending the evaluation to different SR climate datasets as well as applying the
constraining layers to other climate or scientific ML tasks. One possible future direction could be
transferring the constraining methodologies to super-resolution task in general and advancing their
performance using our methods.
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Supplemetary Material

SR-GAN Our conditional GAN architecture uses the above introduced CNN architecture as the
generator network. The discriminator simply consists of convolutional layers with a stride of 2
to decrease the dimensionality in each step and ReLU activations. It is trained as a classifier to
distinguish SR images from real HR images using a binary cross entropy loss. The conditional GAN
takes as input both Gaussian noise as well as the LR data and then generates an SR output. It is
trained with a combination of an MSE loss and the adversarial loss given by the discriminator, like a
standard SR GAN, e.g. Ledig et al. [2017].
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SR-ConvGRU We apply the architecture presented by Leinonen et al. [2021], which uses ConvGRU
layers to address the spatio-temporal nature of super-resolving a time-series of climate data.

SR-VoxelConvGRU To increase the temporal resolution of our data we employ the Deep Voxel
Flow method Liu et al. [2017], a deep learning architecture for video frame interpolation combining
optical flow methods with neural networks. We introduce a new architecture by stacking the Deep
Voxel Flow model and the ConvGRU network (VoxelConvGRU): First, we increase the temporal
resolution resulting in a higher-frequency time-series of LR images on which we then apply the
ConvGRU architecture to increase the spatial resolution. The combined neural networks are then
trained end-to-end.

Table 2: Scores for different constraining methods applied to a SR GAN architecture, calculated over
10,000 test samples. Best scores are highlighted in bold, second best in blue. The metrics shown are
PSNR/SSIM/Mass violation.

MODEL CONSTRAINT METRICS

BICUBIC - 44.3/99.29/1.7e−1

NONE 46.5/99.50/4.6e−2

G-H 47.4/99.56/2.3e−6

SR-GAN CL (OURS) 46.9/99.53/1.4e−6

SMCL (OURS) 47.3/99.56/1.3e−6

Table 3: Scores for different constraining methods applied to the SR ConvGRU architecture, calculated
over 10,000 test samples for 4 times upsampling. Best scores are highlighted in bold, second best in
blue. The metrics shown are PSNR/SSIM/Mass violation.

MODEL CONSTRAINT METRICS

BICUBIC - 44.2/99.28/1.7e−1

NONE 44.8/99.37/1.8e−1

G-H 48.3/99.64/5.5e−5

SR-CONVGRU CL (OURS) 44.7/99.30/1.3e−6

SMCL (OURS) 48.2/99.63/1.3e−6

Table 4: Scores for different constraining methods applied to our VoxelConvGRU SR architecture,
calculated over 10,000 test samples for 4 times upsampling spatially and 2 times temporally. Best
scores are highlighted in bold, second best in blue.

MODEL CONSTRAINT METRICS

BICUBIC+INTERP. - 42.9/99.18/3.1e−1

NONE 45.1/99.40/1.5e−1

G-H 44.7/99.38/1.7e−6

SR-VOXELCONVGRU CL (OURS) 44.0/99.16/8.7e−7

SMCL (OURS) 47.9/99.62/8.7e−7
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