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Abstract

Pyrocumulonimbus (pyroCb) clouds are storm clouds generated by extreme wild-
fires. PyroCbs are associated with unpredictable, and therefore dangerous, wildfire
spread. They can also inject smoke particles and trace gases into the upper tropo-
sphere and lower stratosphere, affecting the Earth’s climate. As global temperatures
increase, these previously rare events are becoming more common. Being able
to predict which fires are likely to generate pyroCb is therefore key to climate
adaptation in wildfire-prone areas. This paper introduces PYROCAST, a pipeline
for pyroCb analysis and forecasting. The pipeline’s first two components, a pyroCb
database and a pyroCb forecast model, are presented. The database brings together
geostationary imagery and environmental data for over 148 pyroCb events across
North America, Australia, and Russia between 2018 and 2022. Random Forests,
Convolutional Neural Networks (CNNs), and CNNs pretrained with Auto-Encoders
were tested to predict the generation of pyroCb for a given fire six hours in advance.
The best model predicted pyroCb with an AUC of 0.90± 0.04.

1 Introduction

More than 17 million people have been affected and USD 144 billion lost through major wildfire
events over the last 30 years [6]. In addition, the degradation of air quality due to the creation of
aerosols and ozone from fires results in between 260 000 and 600 000 premature deaths each year [8].
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The risk posed by wildfires to people and the environment is increasing due to climate change. By
the end of the century, the frequency of wildfires, compared to a 2000 – 2010 reference period, is
predicted to increase by a factor of 1.31 to 1.57 with the number of extreme wildfires increasing even
further [25, 2].

Pyrocumulonimbus (pyroCb) clouds are produced by large and intense wildfires [13, 19]. PyroCbs
create their own weather fronts which can make wildfire behaviour unpredictable through strong
winds and ignite new fires through lightning strikes [16]. PyroCbs also inject wildfire aerosols and
trace gases into the stratosphere where they remain for several months [16, 28, 15]. These events,
which can be on the scale of a volcanic eruption, have important impacts on the Earth’s climate, e.g.,
through direct absorption of solar radiation or cloud formation [10, 24, 9]. PyroCbs could also hinder
the recovery of the ozone layer [18, 20].

Despite the risk posed by pyroCbs, the conditions leading to their occurrence and evolution are still
poorly understood. Previous pyroCb research has generally been limited to the study of occurrences
linked to single wildfire events or over a limited study areas. Geostationary and local weather
information has been used to characterise the properties of these clouds [23, 12] and to create an
empirical thresholding algorithm to detect pyroCb from GOES17 satellite imagery [13]. This paper
presents a machine learning pipeline named ‘PYROCAST’, with the aim of monitoring, forecasting,
and understanding the drivers behind pyroCb events. This pipeline will aid scientists to systematically
research pyroCb, as well as help policymakers and emergency services efficiently allocate resources
and evacuate residents and emergency responders.

PYROCAST 1 is made up of three components:

1. A database (Section 2) containing labelled geostationary satellite images, meteorologi-
cal, and fuel data associated with individual wildfire events. To the best of the authors’
knowledge, the database is the most comprehensive pyroCb database published to date.

2. A forecast model (Section 3), a Random Forest (RF) model that can predict pyroCb occur-
rence from a wildfire over a six-hour horizon. This is the first model that attempts to forecast
pyroCb and the first application of machine learning to this field. Convolutional Neural
Networks (CNNs) and CNNs pretrained with Auto-Encoders (AE-CNNs) are also explored
in this study.

3. A causal discovery framework, a set of tools to understand the characteristics and causes
of pyroCb published in a companion paper [3]. This is the first attempt to create a causal
model for pyroCb formation.

2 PYROCAST Database

To create the PYROCAST database, historical pyroCb events were manually collated from blogs
and sparse databases including the Australian PyroCb registry [11], the CIMSS PyroCb Blog [17],
Annastasia Sienko’s master’s thesis [23] and the PyroCb Online Forum [5]. The events were then
matched to known historical wildfire events in the GlobFire database [1] to determine the start and
end date of each fire. PyroCb that could not be associated with any wildfire were given arbitrary star
and end dates, three days before and after the pyroCb sighting respectively.

Geostationary satellite imagery from Himawari-8, GOES16, and GOES17 was then matched to the
wildfire locations and dates. The spatial coverage of these satellites overlaps with most of the recorded
pyroCb located in North America, Australia and Russia. The satellite imaging instruments also have
high temporal (10 min) and spatial resolutions (0.5− 2 km) to study the evolution of the wildfires.
Six wavelength channels (0.47 µm, 0.64 µm, 0.86 µm, 3.9 µm, 11.2 µm, and 13.3 µm) were chosen to
detect and predict pyroCb. Images were downloaded on an hourly basis during local daytime hours at
the wildfire locations from Amazon Web Services [21, 22] using a custom parallelisation pipeline.
Each scene was interpolated to 1km resolution and cropped to 200 by 200-pixel image.

The cropped geostationary images were then fed into a pyroCb detection algorithm developed by
Peterson et al. at the US Naval Research Laboratory (NRL) [13]. The algorithm was used to output
pyroCb masks and flags for the forecast model. Finally, the geostationary images were matched
with meteorological and fuel data from a climate reanalysis model. For this study, ERA5 reanalysis

1Code and data are available at https://doi.org/10.56272/fpib2524
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[7] was used as it is global, up-to-date, accurate, has a high temporal resolution (hourly), and is
easily accessible via the Copernicus Data Store API [4]. Nineteen variables were downloaded and
interpolated to the geostationary grid. The full list of geostationary satellite and ERA5 variables, with
reasons for selection, can be found in Table 2 of the Appendix. Overall, the PYROCAST database
includes over 148 PyroCb events linked to 111 wildfires between 2018 and 2022, equivalent to over
18 thousand hourly observations. Most importantly, it is science and machine learning ready, allowing
for the systematic study of the characteristics and causes of PyroCb.

3 PYROCAST Forecast Model

3.1 Setup

To create a pyroCb forecast model, multiple experiments with a combination of model architectures
were performed: Random Forest (RF), Convolutional Neural Network (CNN), and Auto-Encoder
pretrained Convolutional Neural Network (AE-CNN). PyTorch was used to implement CNNs and
AE, and Scikit Learn for the RFs and metrics. Models were trained for three different learning
tasks: ‘detection’ where labels and input correspond to the same timestamp, ‘forecast with weather
oracle’ where output labels and meteorological inputs correspond to timestamps six hours after that
of the geostationary inputs, and ‘forecast’ where output labels correspond to timestamps six hours
after that of the geostationary and meteorological inputs.

The models were trained on five different types of input: geostationary channels (gs), three meteoro-
logical variables (w3) selected by importance using a RF for a detection task (convective available
potential energy, boundary layer height, and relative humidity at 650 hPa), geostationary channels and
important meteorological variables (gs+w3), all meteorological variables (w19), and geostationary
and all meteorological variables available (gs+w19). Only data from North America and Australia
were used for training. A cross-validation scheme with five folds was used given that multiple pyroCb
observations can belong to the same wildfire event. The folds were defined by randomly assigning
wildfire events to one of five clusters. A fold scheme defined by clustering by latitude and longitude is
also presented in the Appendix. These results correspond to the performance that could be expected
applying the forecast model to an unseen region such as Europe.

3.2 Training

The RF models consisted of 500 trees, where tree splits were chosen to minimise Gini impurity. For
the RF models, 11 features were aggregated across the spatial dimensions: mean, standard-deviation,
minimum, maximum, and the quantiles corresponding to the following percentiles: 0.01, 0.05, 0.25,
0.5, 0.75, 0.95, 0.99. Trees were grown to a maximum depth of 10 splits. Each tree was trained on a
bootstrap subsample of the data. In evaluating the quality of splits, weighting was used to compensate
for unbalanced labels.

The CNN model consisted of six convolutional layers, followed by two fully connected layers. Max
pooling was used after each convolutional layer and drop-out (25% drop-out probability) was used
after the convolutional layers. ReLU activation functions were used for each layer. A cross-entropy
loss function was used to train the CNN classifier. ADAM optimization with a batch size of 64 and a
learning rate of 0.001 was performed to train the model. CNN models were trained for five epochs
only as overfitting was observed after a low number of epochs. This is due to the small amount of
independent data (84 events, and ∼6k training observations).

AEs were used to obtain pretrained initializations for the weights of the CNN. The CNN described
above corresponds to the encoder and a mirror decoder was used to project the final 16-dimensional
hidden layer to outputs with the same dimension as the inputs. The mean squared error (MSE) was
used to measure the reconstruction loss. We also used ADAM optimization with a batch size of 64
and learning rate of 0.001 to train the AEs. Given the richer labels, the AE-CNN models were trained
for 40 epochs without overfitting.

3.3 Results

The average ‘Area Under the Curve’ (AUC) for each experiment is shown in Table 1. For the
‘detection’ task, the geostationary channels contributed significantly more to the performance. The AE-
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Table 1: Average validation AUC across 5 folds with standard deviations.

gs w3 gs+w3 w19 gs+w19

Detection RF 0.96± 0.00 0.84± 0.04 0.96± 0.01 0.90± 0.04 0.96± 0.01
CNN 0.88± 0.19 0.69± 0.06 0.89± 0.14
AE-CNN 0.97± 0.01 0.72± 0.05 0.94± 0.01

Forecast RF 0.84± 0.03 0.83± 0.06 0.88± 0.04 0.89± 0.05 0.90± 0.04
with oracle CNN 0.55± 0.06 0.67± 0.06 0.66± 0.10

AE-CNN 0.62± 0.06 0.72± 0.06 0.72± 0.04

Forecast RF 0.84± 0.03 0.82± 0.05 0.87± 0.03 0.88± 0.05 0.90± 0.04
CNN 0.55± 0.06 0.73± 0.03 0.71± 0.05
AE-CNN 0.62± 0.06 0.72± 0.03 0.75± 0.05

CNN and RF trained on the geostationary channels were the best detection models. The performance
of the ‘forecast with weather oracle’ and ‘forecast’ models are similar. In practice, however, the
performance for the ‘forecast with weather oracle’ will diminish when the oracle is replaced by a
weather forecast.

For the forecast tasks, both the geostationary and meteorological data contributed to the predictive
power of the models. This agrees with what the literature has suggested so far: it takes a combination
of a very strong wildfire (which the geostationary imagery can detect) and the right meteorological
conditions to generate a pyroCb event [14, 26, 27]. The RF achieved the best performance: 0.90±0.04
AUC for both the ‘forecast with weather oracle’ and ‘forecast’ tasks using all the available variables.
The quantity of data used to train the models may be too small to leverage the full potential of a CNN
model and to exploit the spatially resolved information in the geostationary and meteorological data.
The 11 aggregated features may be enough to extract most of the relevant information to predict
pyroCb.

Figure 1: Validation AUC for different forecast models and input sets as a function of the NRL flag:
‘None’ for no convection or pyroCb observed, ‘Convection’ for when convection is observed but no
deep convection or pyroCb, ‘Deep-convection’ for when deep convection is observed but no pyroCb,
‘PyroCb’ for when a pyroCb is already detected.

The performance of the ‘forecast’ model as a function of the wildfire state was also analysed. These
states correspond to a grouping of the NRL algorithm flags (cf. Section 2). Figure 1 summarises
the AUC of the forecast model as a function of the current state of the wildfire. In general, the RF
model performed best when there was no sign of convection or pyroCb six hours before the label was
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recorded. On the other hand, models struggled the most to predict the pyroCb when pyroconvection
was already detected.

4 Conclusion

This paper presents PYROCAST, a pipeline to monitor, forecast, and understand the drivers behind
pyroCbs clouds formed by extreme wildfires. The PYROCAST database provides the most comprehen-
sive pyroCb dataset published to date with labelled geostationary satellite images and environmental
data for 148 pyroCb events across North America, Australia and Russia between 2018 and 2022. The
PYROCAST forecast model is trained using this data. A RF model showed the most skill in forecasting
pyroCb occurrence from a wildfire six hours in advance with an AUC of 0.90± 0.04. This is the first
attempt to forecast pyroCb and the first application of machine learning to this field. Further work
could include expanding the database through the creation and application of a detection model for
PyroCb and PyroCu clouds, the precursors of PyroCb. More data would in turn improve forecast
performance. Finally, an evaluation of model uncertainty and confidence could also enable better
decision making if the forecast model is deployed during a wildfire.
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Appendix

Figure 2: Diagram of PYROCAST pipeline.

Figure 3: Spatial distribution of pyroCb events in the PYROCAST database.
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Table 2: Geostationary satellite and ERA5 fuel and meteorological variables with description and
motivation for selecting as pyroCb predictors.

Variable Description Sensitive to

ch1 0.47 µm smoke, haze
ch2 0.64 µm terrain type
ch3 0.86 µm vegetation
ch4 3.9 µm thermal emissions & cloud ice crystal size
ch{5,6} {11.2, 13.3} µm thermal emissions & cloud opacity

{u,v} {u,v} comp. of wind at 250 hPa upper-lvl dynamics influencing rising motion
{u,v}10 10m {u,v} component of wind change in fire intensity and spread
fg10 10m gusts since prev. post-processing (same as above)

blh boundary layer height height of turbulent air at the surface

cape convective available potential energy energy for air to ascend into atmosphere
cin convective inhibition energy that will prevent air from rising
z geopotential energy needed for air to ascend into atmo-

sphere as a function of altitude

{slhf, sshf } surface {latent, sensible} heat flux heat released or absorbed {from, neglecting}
phase changes

w surface vertical velocity ascent speed of the plume from the wildfire

cv{h,l} fraction of {high, low} vegetation available fuel for the wildfire
type{H,L} type of {high, low} vegetation (same as above)

r{650,750,850} rel. humidity at {650,750,850} hPa condensation of vapour into clouds

Table 3: Average validation AUC across five clustered folds with standard deviations. These results
are indicative model performance when generalising to an unseen region such as Europe.

gs w3 gs+w3 w19 gs+w19

Detection RF 0.94± 0.02 0.76± 0.03 0.93± 0.03 0.93± 0.04 0.93± 0.04
CNN 0.95± 0.01 0.65± 0.07 0.87± 0.16
AE-CNN 0.97± 0.01 0.67± 0.14 0.91± 0.01

Forecast RF 0.70± 0.08 0.75± 0.05 0.76± 0.05 0.79± 0.07 0.80± 0.06
with oracle CNN 0.52± 0.03 0.65± 0.06 0.63± 0.08

AE-CNN 0.58± 0.05 0.59± 0.05 0.68± 0.06

Forecast RF 0.70± 0.08 0.70± 0.06 0.73± 0.08 0.74± 0.05 0.77± 0.06
CNN 0.52± 0.03 0.63± 0.08 0.64± 0.09
AE-CNN 0.58± 0.05 0.66± 0.06 0.68± 0.09
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Figure 4: Example of geostationary images over the six wavelength channels a wildfire event in
Timbarra, Australia (January 2019).

Figure 5: Example of NRL label masks overlaid onto geostationary satellite image (averaged over the
0.47 µm, 0.64 µm and 0.86 µm channels) of a wildfire event in Timbarra, Australia (January 2019).
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Figure 6: Clustered cross-validation folds.
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