Towards Global Crop Maps with Transfer Learning
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Abstract

The continuous increase in global population and the impact of climate change
on crop production are expected to affect the food sector significantly. In this
context, there is need for timely, large-scale and precise mapping of crops for
evidence-based decision making. A key enabler towards this direction are new
satellite missions that freely offer big remote sensing data of high spatio-temporal
resolution and global coverage. During the previous decade and because of this
surge of big Earth observations, deep learning methods have dominated the remote
sensing and crop mapping literature. Nevertheless, deep learning models require
large amounts of annotated data that are scarce and hard-to-acquire. To address this
problem, transfer learning methods can be used to exploit available annotations
and enable crop mapping for other regions, crop types and years of inspection. In
this work, we have developed and trained a deep learning model for paddy rice
detection in South Korea using Sentinel-1 VH time-series. We then fine-tune the
model for i) paddy rice detection in France and Spain and ii) barley detection in the
Netherlands. Additionally, we propose a modification in the pre-trained weights
in order to incorporate extra input features (Sentinel-1 VV). Our approach shows
excellent performance when transferring in different areas for the same crop type
and rather promising results when transferring in a different area and crop type.

1 Introduction

Food security, but also social and economic development are at high risk due to the population growth
and climate change and the pressure they put on agriculture. Several recent studies indicate that
the changes in climate cause substantial yield losses at the global level [20,[19]. At the same time,
the production should be increased by 24% until 2030 - compared to 2022 - to achieve zero hunger,
while reducing emissions by 6% [14]. Apart from climate-friendly policies and practices to ensure
and promote the increase of agricultural productivity [[L1], there is also a need of global, timely and
precise crop type mapping systems to assist in the monitoring and management of agricultural fields
[17]], the prediction of crop production [21}, 9] and the effective spatial allocation of the agricultural
practices [J5]].

Earth Observation (EO) data have been extensively used to train Machine Learning (ML) and Deep
Learning (DL) models to produce crop maps [4} 18} 22 12} |3} 24} [7]. Nevertheless, most approaches
require large labeled datasets for training [[16, [10} 23]]. In reality, ground samples that capture spatio-
temporal differences of crops worldwide are scarce and this remains one of the main barriers for
global applications [8]], limiting most studies to small or homogeneous areas. The most trustworthy
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way to acquire such ground observations is field surveys that are time-consuming, expensive and
cannot cover every part of the world (e.g. inaccessible/remote areas). Transfer Learning (TL) [[15]]
has been successfully applied to overcome this issue, by improving the learning performance on
reduced datasets while decreasing the computational complexity [26]]. To this direction, a handful of
works have been published the past couple of years that apply TL for crop classification using EO
data [6, [1, [13L 25].

In this paper, we apply TL on paddy rice mapping using only Sentinel-1 time series, by transferring
knowledge from South Korea to European areas, for which there is a small amount of ground samples.
We implement and apply a recurrent U-net model to detect paddy in South Korea using Sentinel-1
VH backscatter time-series as input. Then, we explore the capability of transferring the knowledge
captured from the paddy rice model to effectively predict 1) paddy rice in Spain and France and ii)
summer barley in the Netherlands. Moreover, we explore fine-tuning the model by augmenting the
input space with Sentinel-1 VV backscatter coefficients.

2 Data & Problem Formulation

Data. We used Synthetic Aperture Radar (SAR) Sentinel-1 data and computed the 20-day-mean
backscattering coefficient (VHIVV) for each pixel for a time-series throughout the growing period.
Then we extracted patches of 256x256 pixels for the areas of interest, using Google Earth Engine. All
input data were scaled using max-min normalization. The datasets of rice in South Korea (2017-2019),
Spain (2021), and France (2020) consist of 12,942, 88, and 134 patches, respectively. The dataset of
summer barley in Netherlands (2018) includes 2,280 patches, however with few barley pixels in the
patches. In each dataset, 60% of randomly selected patches were used for training and the rest 40%
were used for testing.

Problem Formulation. The time series of EO data are denoted by z7 ; and the annotated crop data
by y;. where 7, t, s, c represent region, time, feature, and crop type, respectively. In this study, the
crop mapping was performed with a recurrent U-net model (h) exploiting time-series during the
growing period:

g’l’,t = h(x’r’,lamr,27'“7x’r,t> (1)
where t = 1...8 indicates the relative time instance, i.e., 20-day feature vector, within the cultivation
period. The model was pre-trained (hP) to classify paddy rice in South Korea by using Sentinel-1 VH
backscatter, in patches extended all over the country and for the years of 2017-2019. However, unlike
South Korea where rice is a staple food, the number of x in the other cases of r, ¢ hardly suffice to
efficiently train deep neural networks.

3 Methodology

3D Recurrent U-net. A custom recurrent U-Net (Fig. [2)) was designed to exploit both spatial and
temporal context of the EO time-series in order to produce timely paddy rice segmentation maps. The
model follows a standard U-Net architecture; the encoder consists of a series of recurrent modules
including convolutional layers, drop-out, and spatial max-pooling. In the recurrent module, each time
step shares the convolution layers, and the weighted output of the previous time step is added to the
next time step; thus, the phenological context can be passed to the later calculation. Considering both
the preservation of temporal features and computational efficiency, the max-pooling layers at the skip
connections were applied to the time axis so that the adjacent time steps at the same developing phase
were pooled, and half the size of the features were passed to the decoder.

Transfer Learning. We implement different scenarios of TL to identify an optimal application
according to data availability and similarity. As a baseline, we transferred only the architecture with
randomly initialized weights (RI). The others include initializing with the pre-trained weights and
then fine-tuning (f™%°(-)) to adapt to the target r, ¢, s. Considering that the model (%) consists of an
encoder (hg), which extracts the crop’s phenological characteristics, and it is followed by a decoder
(hp), the applications were to fine-tune the entire networks (F'T’), fine-tune only h g while freezing
hp (FTE) or fine-tune hp while freezing hy (FTp).

RI = f(hg -hp) FT = f(hY,-hY)) FTg=f(hy)- b, FTp=~hY, - f(hY}) ()



Incorporation of additional feature types. In crop classification, diverse characteristics of each
crop (e.g., texture, reflection) raise the need of an extended application of TL, such as using different
sources of data as input. In this direction, we adapt h?, pre-trained on Sentinel-1 VH backscatter, to
take as input both Sentinel-1 VH and VV features. To do this, the pre-trained weights at the first layer
of the encoder (Wgo) are divided by the total number of input layers (Eq. Therefore, a similar
scale of signal intensity is transferred to the activation functions () that is invariant to the number of
inputs, and ensures that h” maintains the trained feature extraction process.

hh = o(WE -a® + WE - 2*)/2 +b) 3)

4 Experiments and Results

Experiments. We implemented 10 scenarios by combining different , ¢, s, where fine-tuning was
conducted in r; and performance was tested in r. The main goal of this study is to investigate
the effect of TL for the same target labels (e.g., paddy rice) in different areas. Therefore, we
run the following experiments: r1-r2-c-s: 1) Spain-Spain-rice-VH, 2) Spain-Spain-rice-VHIVYV, 3)
Spain-France-rice-VH, 4) Spain-France-rice-VHIVYV, 5) France-France-rice-VH, 6) France-France-
rice-VHIVYV), 7) France-Spain-rice-VH, 8) France-Spain-rice-VHIVV. Additionally, we explore the
efficiency of TL in different regions and different crop types (summer barley in the Netherlands)
to examine if the knowledge of paddy rice could contribute in mapping other crops; ri-r2-c-s: 9)
Netherlands-Netherlands-summer barley-VH, 10) Netherlands-Netherlands-summer barley-VHIV'V.
It is worth mentioning that the data of each region have been acquired from different years, which
makes the application of TL even more challenging.

Based on our experiments, we found F'Tr achieved better performance than F'T" and FTp. Fine-
tuning the decoder did not converge, whereas by fine-tuning only its last (or 2-3 last) layers the model
was successfully trained, but provided suboptimal performance. Table[I|presents the Intersection over
Union (IoU) of the positive class, for the RI, F'T" and F'Tr and the 10 different scenarios mentioned
earlier. We also compare their performance against locally trained Random Forest (RF) models.
Visual maps of predictions for each scenario and method can be found in the Appendix (Figures|[6}{I3)

Table 1: Mean IoU for the different scenarios and methods

Fine-tuning Spain France The Netherlands
Test Spain France France Spain The Netherlands
Feature VH VHIVV VH VHIVV VH VHIVV VH VHIVV VH VHIVV
RF 0.87 090 0.63 0066 076 084 0.77 0.78 0.26 0.40
RI 0.86  0.69 052 036 076 074 070 0.73 0.31 0

FT 0.89 090  0.57 0.63 0.82  0.83 082 0.83 0.40 0.45
FTg 090 090 063 0066 086 086 0.79 084 042 0.54

Using only the model’s architecture without transferring the pre-trained weights (RI), we observe
a poor performance in most cases, which is even poorer in the case of VHIVV input. This can be
explained by the fact that augmenting the input with more layers results in more parameters which, in
combination with the few labels and no transferred knowledge, prevents the model from learning. On
the other hand, fine-tuning the pre-trained U-net works very well for paddy rice mapping, both in
the case of freezing the decoder and updating only the parameters of the encoder (F'I'r) and in the
case of updating the whole network’s weights (F'T"). As expected, when fine-tuning and testing in the
same area the performance is better. But when we fine-tune in Spain and test in France, we notice a
significant drop in the IoU.

Figure [I] shows the mean VH time-series of the True Positive (TP) and the False Neg-
ative (TN) of the predictions of the model fine-tuned in Spain and tested in France, to-
gether with the corresponding mean VH time-series of rice pixels in Spain. TP (i.e., cor-
rectly predicted rice pixels) have very similar VH signature with that of the rice in Spain,
whereas for FN predictions (i.e., rice instances that the model failed to identify) backscat-
ter coefficients differ significantly, as compared to both the TP and the Spain rice pixels.
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ally flooded at the start of the cultiva- series of the True Positive (TP) and False Negative (FN)
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ity of identifying water content, which tested in France. The blue dots represent the mean VH

makes them ideal in classifying paddy time-series of rice instances in Spain

rice. However, this is not the case for

summer barley, and thus the discrimina-

tion of it using SAR data is much more challenging. Nevertheless, using both VH and VV backscatter
coefficients we are able to achieve an IoU of 0.54 - also recall, precision and f1-score of 0.7 (Tables
[21 B]and @) - which is interestingly high given the nature of the problem. In this case, we notice not
only an improvement by using the extra input of V'V, but rather a significantly better performance by
fine-tuning only the encoder.

It is also worth mentioning that RF also achieves great performance in almost every paddy rice
experiment. However, it fails in predicting summer barley, even in the case of using both VV and
VH, with an IoU of 0.4. Identifying paddy rice using EO data is not a particularly difficult problem,
thanks to the flooding in the early vegetation period that was mentioned above. On the contrary,
prediction of summer barley is a much more complex task, since it could share common phenological
characteristics with other summer crop types (e.g., maize, summer wheat).

5 Conclusion

Precise, dynamic and detailed global crop type maps are essential for monitoring crop production
that is under pressure. Such maps are powerful datasets that enable the timely identification of food
security challenges and the large-scale, yet local-specific, rural planning to mitigate climate change.
In this context, we propose a transfer learning method that leverages a pre-trained recurrent U-net
model for paddy rice mapping in South Korea and fine-tunes it in other areas (France, Spain and
the Netherlands) and/or crop types (paddy rice and summer barley) with a few available annotated
data. TL for paddy rice mapping yielded excellent results both in Spain and in France. Based on our
experiments, fine-tuning the encoder or the entire network provided the best performance, whereas
fine-tuning the decoder did not converge. Additionally, the incorporation of an additional feature (i.e.,
V'V backscatter coefficient) boosts the performance in almost every scenario. Finally, TL for barley
in the Netherlands exhibits promising results, especially in the case of fine-tuning the encoder and
incorporating the VV input, which outperforms significantly the corresponding RF model.
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A Supplemental Material

A.1 Model Details

Dynamic prediction
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Figure 2: Recurrent U-net architecture

A.2 Training Details

Apart from making predictions with the entire time-series, we are able to acquire predictions early
in the cultivation period using zero padding in the later time steps (Figure[3). The prediction using
the full time-series (¢ = 8) and the early prediction using confined time steps (1 < ¢ < 8) share a
common feature extraction process but the signal intensity through the neural network can be greatly
differed by o. Therefore, if the input of the aforementioned time-series is provided in a random order
during the training phase, the loss function is hardly optimized and overfitted to lastly seen training
instances, which is associated with the problem of catastrophic forgetting [12]].

Therefore, we manipulate the training order as described in Fig. [3] so that the model will be able to
sequentially learn from each time-step’s data. Specifically, in each epoch we firstly provide as input
the cases of the very early prediction (e.g. only 1 time step) and lastly the ones of the full growing
season. By training the model with chronologically ordered batches the parameters are updated
gradually, with an additional time step after every new batch type, which is more likely to preserve
the knowledge gained from the values of each new time step.

A.3 Additional results and plots

Additional metrics Table[2] [3]and ] present the recall, the precision and the f1-score of the positive
class for each of the different experiments, respectively.
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Figure 3: Chronologically ordered batch training

Table 2: Recall for the positive class in the different scenarios and methods

Fine-tuning Spain France The Netherlands
Test Spain France France Spain The Netherlands
Feature VH VHIVV VH VHIVV VH VHIVV VH VHIVV VH VHIVV
RF 0957 0964 0.665 0.698 0.831 0.881 0.878 0.846 0.293  0.446
RI 0967 0.765 0584 0460 0879 0.841 0.809 0.818 0.400 0.004
FT 0957 0962 0.601 0.674 0896 0.894 0954 0950 0490 0.614
FTg 0964 0962 0.674 0.694 0915 0911 0914 0964 0518 0.705

Table 3: Precision for the positive class in the different scenarios and methods

Fine-tuning Spain France The Netherlands
Test Spain France France Spain The Netherlands
Feature VH VHIVV VH VHIVV VH VHIVV VH VHIVV VH VHIVV
RF 0910 0926 0926 0931 0901 0943 0.866 0.906 0.718 0.781
RI 0.891 0.875 0.826 0.638 0.849 0.856 0.838 0.871 0590 0477
FT 0932 0928 0919 0915 0905 0920 0.858 0.872 0.686  0.631
FTg 0929 0935 0903 0929 0933 0939 0.854 0.873 0.683  0.696

Table 4: F1-score of the positive class for the different scenarios and methods

Fine-tuning Spain France The Netherlands
Test Spain France France Spain The Netherlands
Feature VH VHIVV VH VHIVV VH VHIVV VH VHIVV VH VHIVV
RF 0932 0945 0774 0.798 0864 0911 0.872 0.875 0416 0.567
RI 0927 0816 0.684 0534 0864 0848 0.824 0.844 0477 0.007
FT 0944 0945 0726 0776 0901 0907 0903 0909 0.571 0.622
FTg 0947 0948 0772 0794 0924 0925 0.883 0916 0.589 0.700

Below we present visual predictions of the different scenarios and for the different methods of crop
mapping. In every Figure below, the first column illustrates a composited of the first three Sentinel-1
VH images (Image), the second the ground truth labels (Label), the third the RF predictions, the
fourth the RI predictions, the fifth the F"T" predictions and the sixth the /'’y predictions.



Figure 4: Visual comparisons on experiment 1 (Spain-Spain-rice-VH). The first row shows the overall
results of the test image and the following rows show three randomly selected test patches. (a) Image.
(b) Label. (c) RF. (d) RL (e) FT. (f) FTg.

(a) (b) (c) (d) (e) ()

Figure 5: Visual comparisons on experiment 2 (Spain-Spain-rice-VHIVV). The first row shows the
overall results of the test image and the following rows show three randomly selected test patches. (a)
Image. (b) Label. (c) RF. (d) RI. (e) FT. (f) FT.
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Figure 6: Visual comparisons on experiment 3 (Spain-France-rice-VH). The first row shows the
overall results of the test image and the following rows show three randomly selected test patches. (a)
Image. (b) Label. (c) RF. (d) RI. (e) FT. (f) FTg.
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Figure 7: Visual comparisons on experiment 4 (Spain-France-rice-VHIVV). The first row shows the
overall results of the test image and the following rows show three randomly selected test patches. (a)
Image. (b) Label. (c) RF. (d) RI. (e) FT. (f) FTg.
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Figure 8: Visual comparisons on experiment 5 (France-France-rice-VH). The first row shows the
overall results of the test image and the following rows show three randomly selected test patches. (a)
Image. (b) Label. (c) RF. (d) RI. (e) FT. (f) FTg.
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Figure 9: Visual comparisons on experiment 6 (France-France-rice-VHIVV). The first row shows the
overall results of the test image and the following rows show three randomly selected test patches. (a)
Image. (b) Label. (c) RF. (d) RI. (e) FT. (f) FTg.
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Figure 10: Visual comparisons on experiment 7 (France-Spain-rice-VH). The first row shows the
overall results of the test image and the following rows show three randomly selected test patches. (a)
Image. (b) Label. (c) RF. (d) RI. (e) FT. (f) FTg.

Figure 11: Visual comparisons on experiment 8 (France-Spain-rice-VHIVV). The first row shows the
overall results of the test image and the following rows show three randomly selected test patches. (a)
Image. (b) Label. (c) RF. (d) RI. (e) FT. (f) FTg.
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Figure 12: Visual comparisons on experiment 9 (Netherlands-Netherlands-barley-VH). The first row
shows the overall results of the test image and the following rows show three randomly selected test
patches. (a) Image. (b) Label. (c) RF. (d) RI. (e) FT. (f) FTg.

(d)

Figure 13: Visual comparisons on experiment 10 (Netherlands-Netherlands-barley-VHIVV). The first
row shows the overall results of the test image and the following rows show three randomly selected
test patches. (a) Image. (b) Label. (c) RF. (d) RIL. (e) FT. (f) FTk.
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