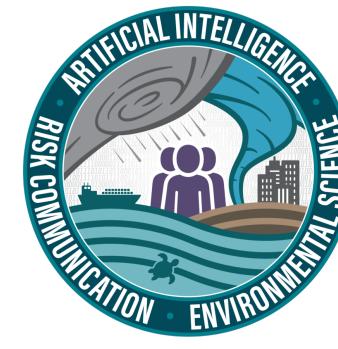




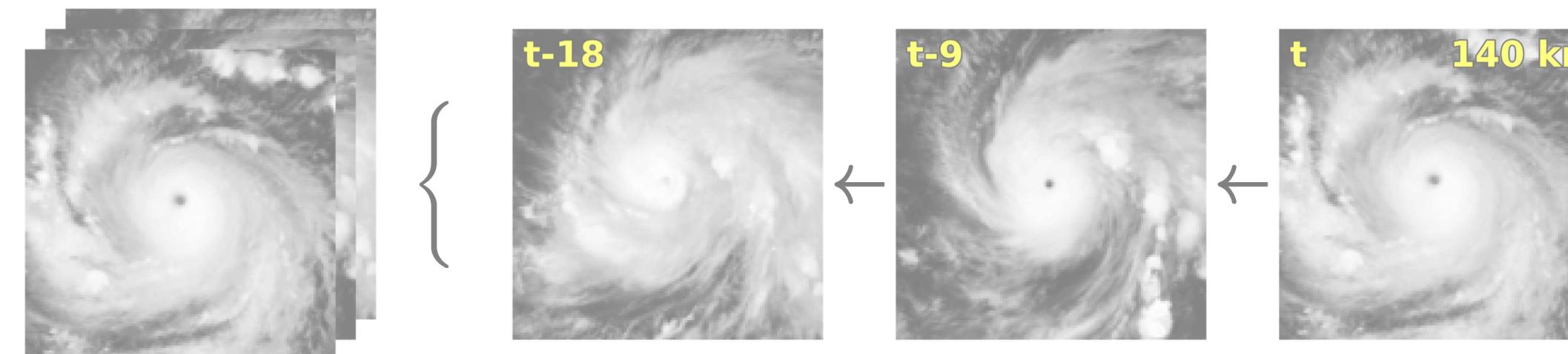
Colorado State University



# Attention-Based Scattering Network for Satellite Imagery

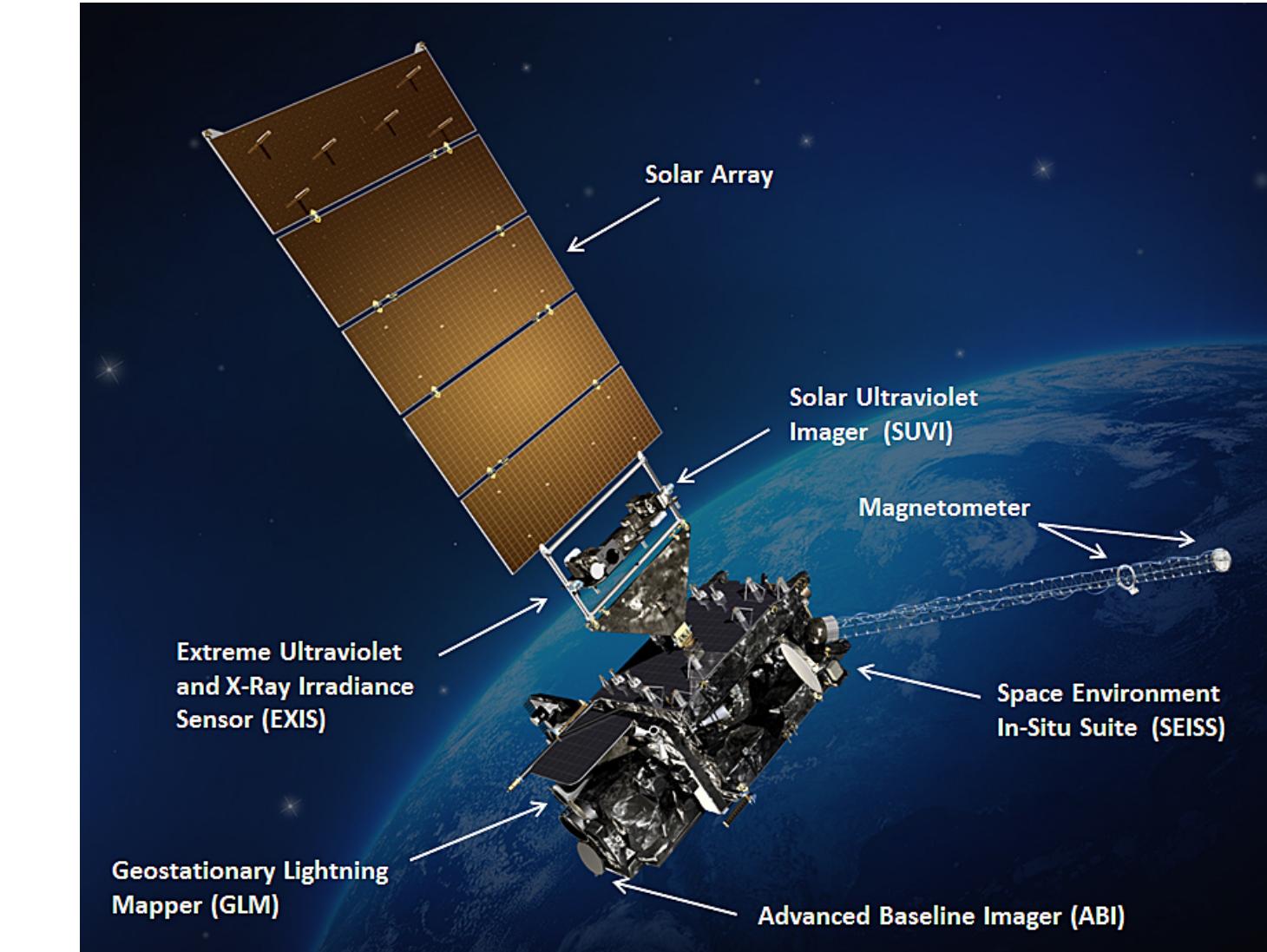
**Jason Stock & Charles Anderson**

*Computer Science  
Colorado State University*



# Introduction

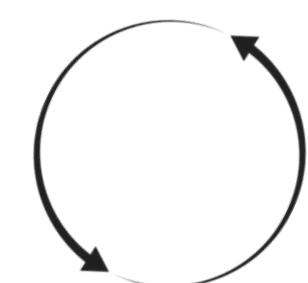
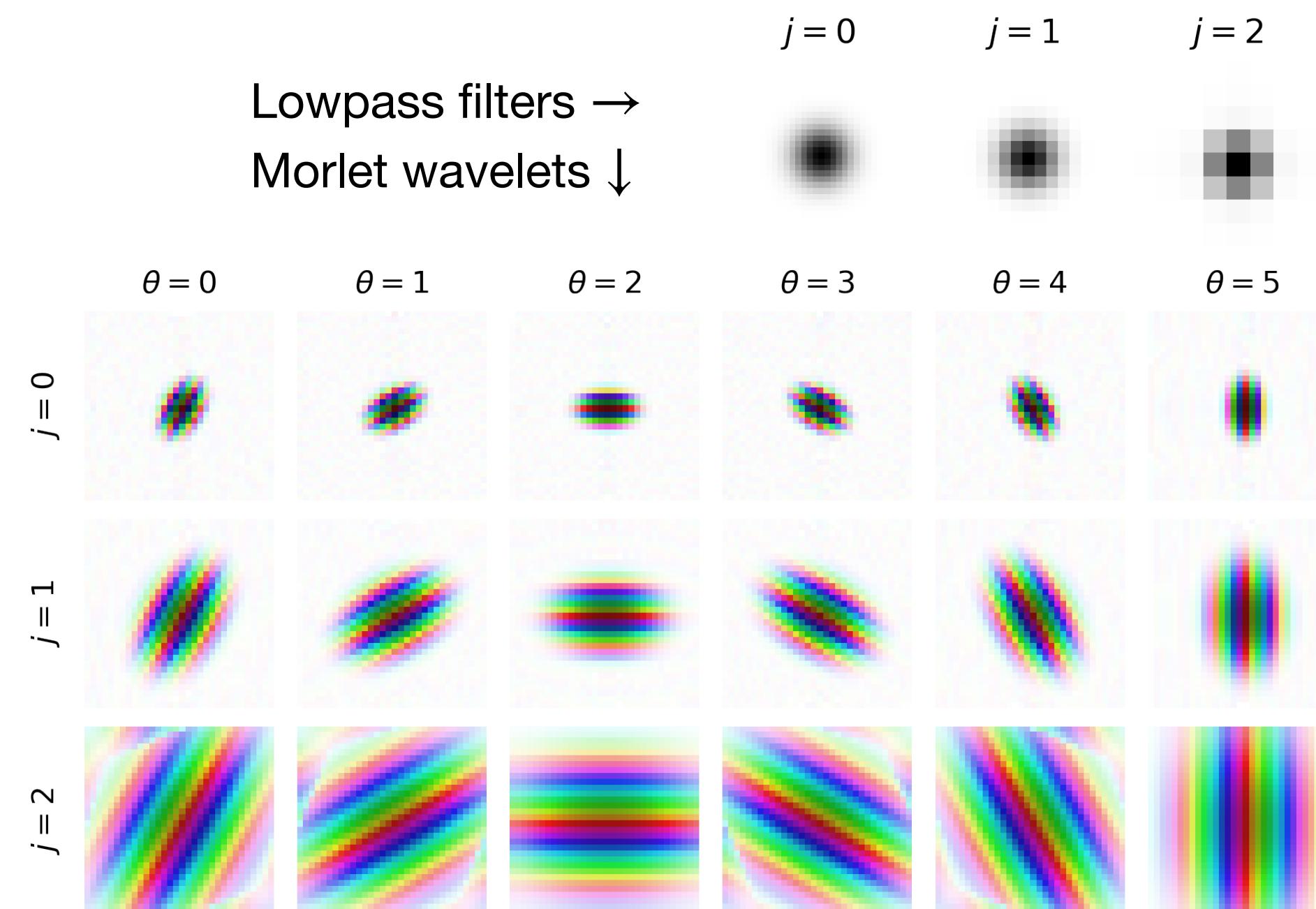
- **Multi-channel satellite imagery**, from stacked spectral bands or spatiotemporal data, have meaningful representations for various atmospheric properties
- Effectively combining these channels to create a **performant** and **trustworthy** model is important to forecasters and modeling experts
- Satellite-based applications + machine learning problems:
  - ▶ Deep neural networks **lack inherent interpretability**
  - ▶ Often limited by the **quantity of available labeled data**



NOAA/NASA GOES-R Satellite

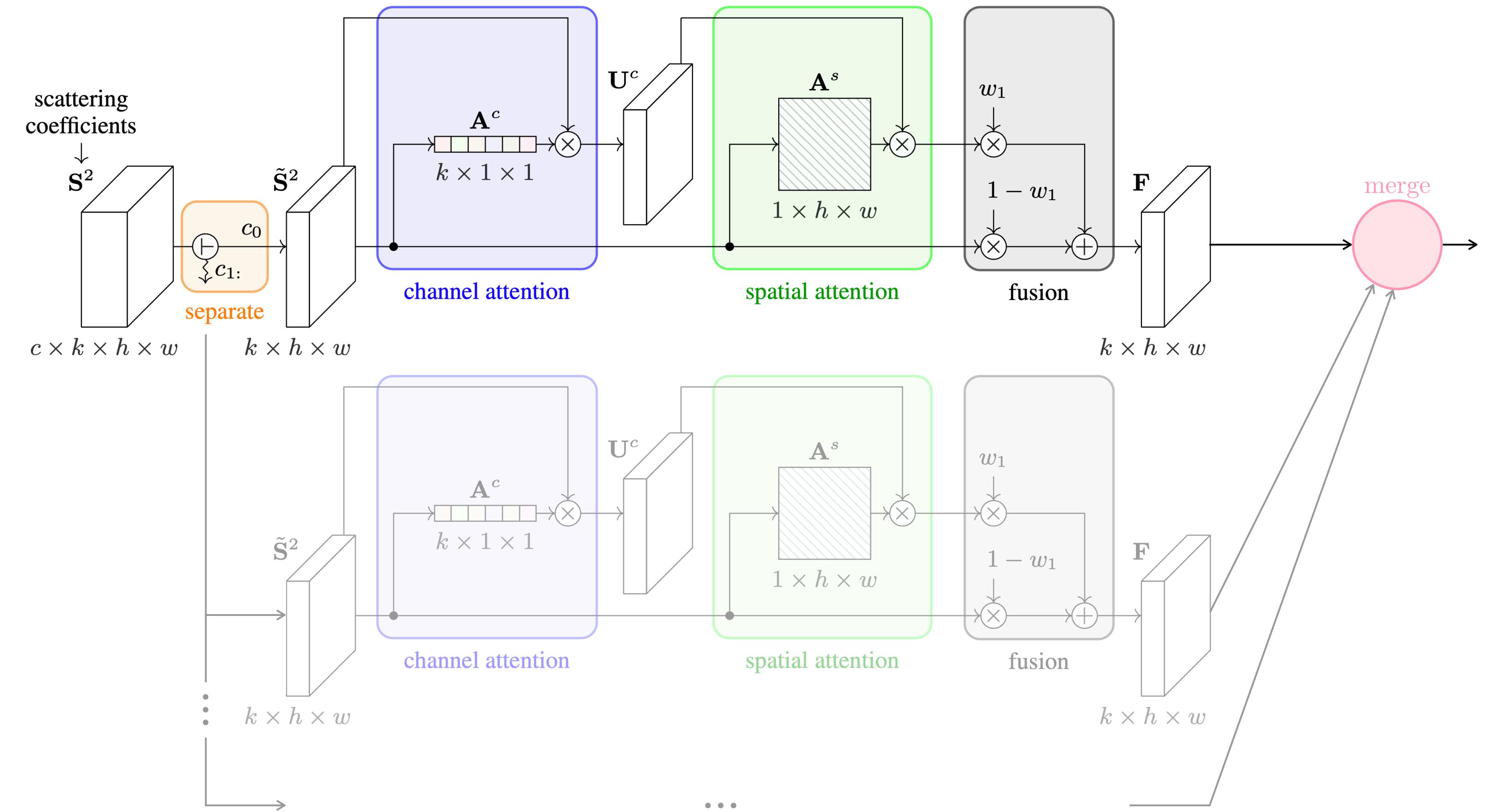
# Scattering Transform

- Introduced by Stéphane Mallat (2012)
  - Strong geometric invariants (translation, rotation, scaling)
  - Robust to noise and stable to deformations
- Defined as a convolutional neural network
  - Wavelet transform (convolution)
  - Lowpass filter (average pooling)
  - Complex modulus (non-linearity)
- ▶ Largely **underexplored in weather and climate** applications
- ▶ **Main contribution:** first approach applying local attention to individual scattering coefficients



# Network Architecture

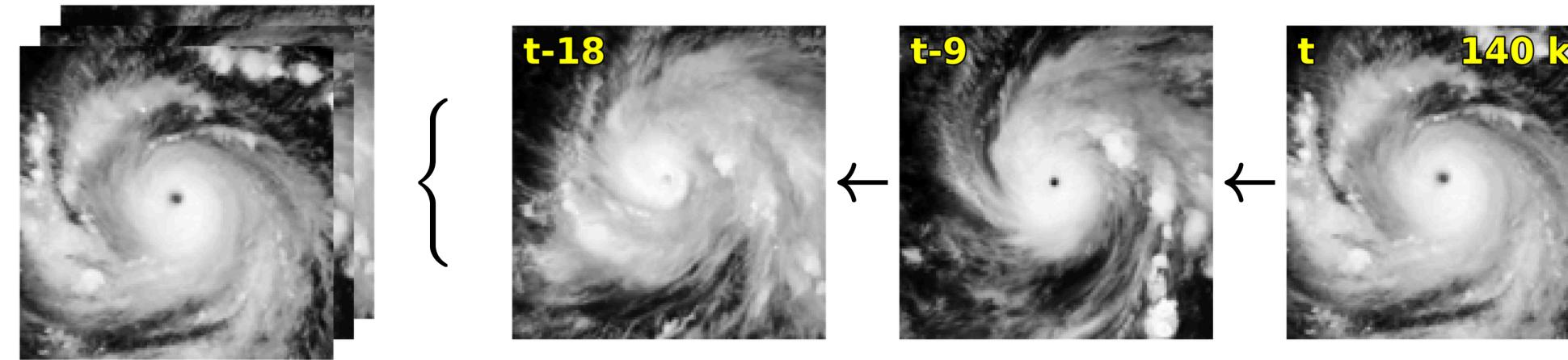
1. Scattering Transform
2. Channel Separation
3. Channel Independent Attention Modules
4. Feature Merging



# Experimental Datasets

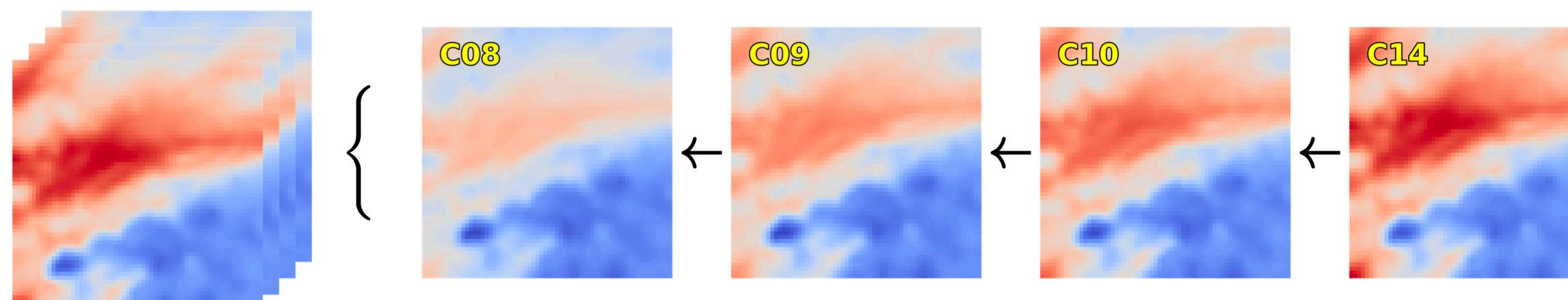
- **Estimating Tropical Cyclone Intensity**

- Single-band infrared imagery (10.3  $\mu\text{m}$ ) from **GOES-16 ABI** - 600 storms from 2000-2019
- Leverage temporal relationships of previous timesteps up to the point of prediction (regression)



- **Short Range Lightning Prediction**

- Water vapor bands (6.2, 6.9, 7.3, & 11.2  $\mu\text{m}$ ) from **GOES-16 ABI** and lightning counts from **GLM**
- Target flash counts, lagged by one hour, are converted to binary labels (classification)



# Results

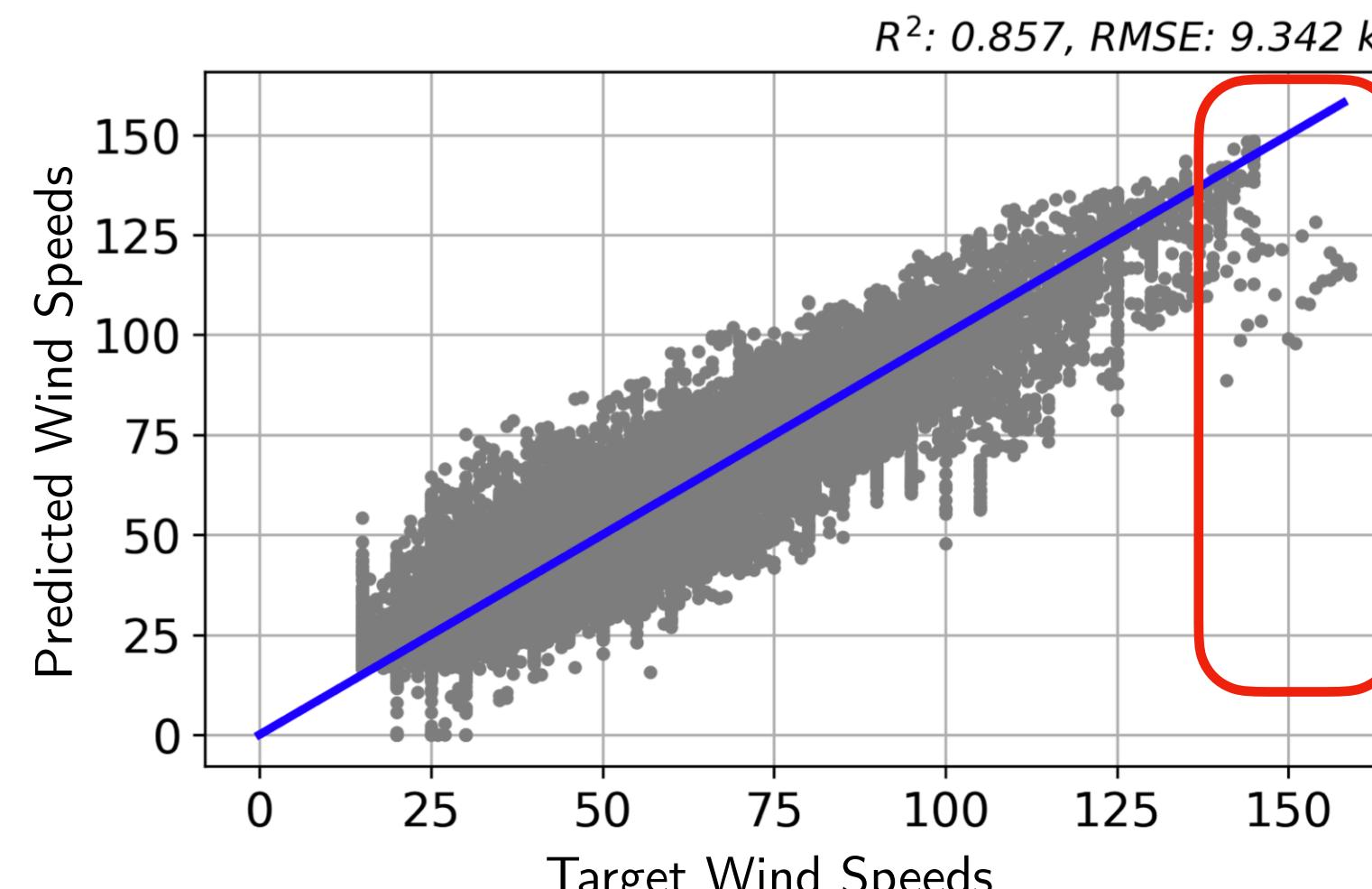
- Multiple trials with a reduced number of training samples
  - Great advantages primarily for **small sample sizes**,
  - While there are diminishing returns for very large sample sizes
- **Better generalization** than common state-of-the-art methods
  - Fewer trainable parameters than a linear model

**Table 1:** Experimental results using  $n$  training samples and  $p$  parameters.

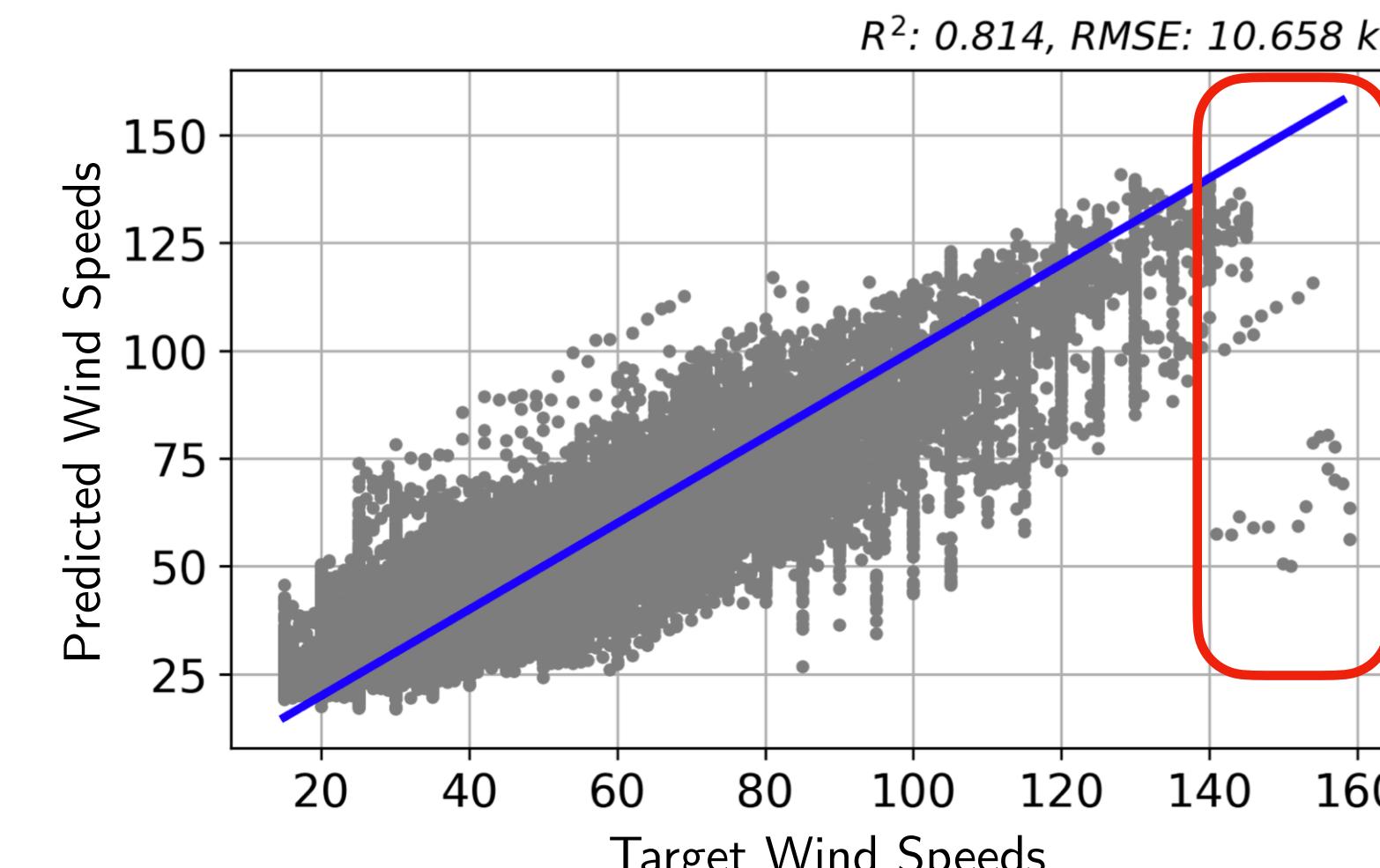
| $n \downarrow p \rightarrow$    | Scattering<br>(51.8K) | ResNet18<br>(11.2M) | MobileNetV3<br>(1.5M) | Conv.<br>(268.2K) |
|---------------------------------|-----------------------|---------------------|-----------------------|-------------------|
| TC Intensity, rmse ( $R^2$ )    |                       |                     |                       |                   |
| 1000                            | <b>15.83 (0.59)</b>   | 16.47 (0.56)        | 56.85 (-4.28)         | 17.51 (0.50)      |
| 5000                            | <b>12.01 (0.76)</b>   | 14.30 (0.67)        | 55.18 (-3.97)         | 13.34 (0.71)      |
| 10000                           | <b>10.98 (0.80)</b>   | 11.85 (0.77)        | 21.13 (0.27)          | 13.81 (0.69)      |
| 30000                           | <b>10.35 (0.83)</b>   | 10.74 (0.81)        | 13.07 (0.72)          | 11.68 (0.78)      |
| 47904                           | <b>9.34 (0.86)</b>    | 10.66 (0.81)        | 11.90 (0.77)          | 11.67 (0.78)      |
| Lightning Occurrence, acc. (F1) |                       |                     |                       |                   |
| 1000                            | <b>86.04 (0.85)</b>   | 73.68 (0.74)        | 62.46 (0.39)          | 78.27 (0.74)      |
| 5000                            | <b>88.01 (0.87)</b>   | 87.59 (0.87)        | 68.82 (0.55)          | 82.35 (0.82)      |
| 10000                           | <b>88.87 (0.88)</b>   | 86.33 (0.85)        | 81.46 (0.83)          | 84.37 (0.84)      |
| 50000                           | <b>89.58 (0.89)</b>   | 89.20 (0.88)        | 87.49 (0.87)          | 87.99 (0.87)      |
| 212604                          | 90.46 (0.90)          | <b>90.51 (0.90)</b> | 86.87 (0.88)          | 89.57 (0.89)      |

# Estimating Tropical Cyclone Intensity

- Lowest errors observed with the **highest intensity samples** (where ResNet18 performs worst)
- Target wind speeds  $> 140$  kn
  - Scattering Net RMSE = **27.231 kn**
  - ResNet18 RMSE = **51.630 kn**



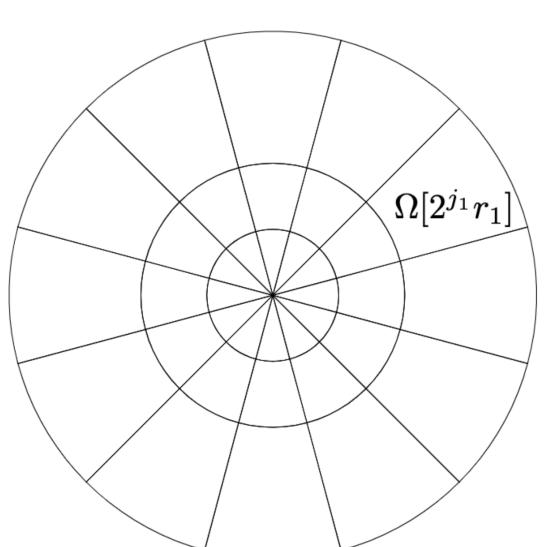
**(a)** Scattering Network



**(b)** ResNet18

# Network Interpretations

- **Spatial attention features**
  - Feature maps superimposed for individual input channels
- **Scattering coefficient attention features**
  - Scalar weights of first- and second-order coefficients
- **Gradient based methods**
  - Demonstration of differentiable post hoc explainability methods



Bruna, J., & Mallat, S. (2013).  
*Invariant scattering convolution networks.*

$t - 18$

$t - 9$

$t$

$t - 18$

# Thank you!

---

This work is supported by NSF Grant No. 2019758, *AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES)*.

Jason Stock  
[stock@colostate.edu](mailto:stock@colostate.edu)  
[cs.colostate.edu/~stock](http://cs.colostate.edu/~stock)