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Abstract

Multi-channel satellite imagery, from stacked spectral bands or spatiotemporal data,
have meaningful representations for various atmospheric properties. Combining
these features in an effective manner to create a performant and trustworthy model
is of utmost importance to forecasters. Neural networks show promise, yet suffer
from unintuitive computations, fusion of high-level features, and may be limited
by the quantity of available data. In this work, we leverage the scattering transform
to extract high-level features without additional trainable parameters and introduce
a separation scheme to bring attention to independent input channels. Experiments
show promising results on estimating tropical cyclone intensity and predicting the
occurrence of lightning from satellite imagery.

1 Introduction

Machine learning has received great attention in the atmospheric science community over the past
couple of years. Many satellite-based applications leverage convolutional neural networks (CNN)s for
tasks including but not limited to: forecasting next-hour tornado occurrences [1], predicting intense
convection [2], and estimating topical cyclone intensity [3]. These applications create input samples
with stacked channel-wise features consisting of satellite imagery at different wavelengths and train a
network to recognize certain patterns. While the approach is undoubtedly effective, it is not clear
how these input channels are combined in the earlier layers of the network. On the other hand, a
trained forecaster may intuitively look at individual channels, or the differences between multiple
channels, to identify relevant features and patterns that can easily be explained. Furthermore, these
networks are often limited by the quantity of available labeled data, which can lead to a model that
underperforms with too few parameters or overfits as complexity increases. This further motivates
the need for an architecture that is both interpretable-by-design and generalizable to small datasets.

One effective technique to modeling sparsely labeled data is with the scattering transform as was
introduced by Mallat [4]. This uses a cascade of wavelet transforms with a predetermined filterbank
and a non-linear modulus, akin to the structure of CNNs. Not only has the scattering transform
shown promise for applications with relatively few training samples [5–8], but it also has many nice
properties for modeling satellite data. Specifically, the design builds strong geometric invariants (e.g.,
translations, rotations, and scaling) and is stable to the action of diffeomorphisms – a desirable trait
due to the continuous change in cloud structure over time. Studies have also shown the scattering
transform to promote sparse representation of data with a high degree of discriminability which can
ultimately simplify downstream tasks [5, 9].

To build an architecture that more closely aligns with the visual interpretations of satellite imagery
done by forecasters, we incorporate attention into the early layers preceding the scattering transform.
Attention mechanisms work to identify salient regions in complex scenes as inspired by aspects of
the human visual system [10]. Recent computer vision studies have shown attention to increase
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Figure 1: Network architecture illustrating the separation of attention modules on the scattering transform. The
left most block represents the output of the scattering transform on the input. The separate operator isolates a
single channel, e.g., C0, and passes the normalized scattering coefficients, S̃2, through channel attention and
spatial attention before fusion. There are C total attention modules in the network. Figure modified from [12].

performance and interpretability as well as improve confidence of post hoc explainability methods
[11, 12]. Most similar to this work are the studies from [13, 8]. In [13], residual layers mix the input
channels before applying attention and [8] applies a scattering attention module after each step in a
U-Net. However, our approach differs in that we introduce a separation scheme that applies attention
to individual input channels that directly follow the scattering transform.

2 Methodology

Figure 1 illustrates the primary components of our network, starting with our output of the scattering
transform and showing an attention module separated by input channel. The implementation and
design choice for each part is described in detail below.

Scattering Transform Scattering representations yield invariant, stable (to noise and deformations),
and informative signal descriptors with cascading wavelet decomposition using a non-linear modulus
followed by spatial averaging. Using the Kymatio package [14], we compute a 2D transform with a
predetermined filter bank of Morlet wavelets at J = 3 scales and L = 6 orientations. For each input
channel, we apply a second-order transform to obtain the scattering coefficients S2. These channels
are processed independently and combined later in the network. Additional details on the scattering
transform can be found in Appendix A.1.

Channel Separation Local attention methods routinely process their input using all the channel
information at once, e.g., feature maps from RGB color channels. However, the result of the scattering
transform yields a 5-dimensional tensor, S2, where each channel, C, in the input has their own set of
K scattering coefficients. Rather than stacking the result and passing them all through the subsequent
layers together, we propose to first separate the input channels and process the coefficients individually.
This creates C new attention modules, each with independent weights, that are processed in parallel.
By following this separation scheme we add the benefit of localizing patterns in the input before
joining high-level features. Thus, the interpretation of attention over individual input channels is
improved significantly, especially if the channels have different meaning, e.g., temporal, visible,
infrared, derived products, etc.

Attention Modules The attention modules encompass three primary components, namely: (i) chan-
nel attention, (ii) spatial attention and (iii) feature fusion. The channel attention features are used to
inform the spatial attention module before fusion via feature recalibration. Specifically, the network
learns to use the spatial information over the K channels to selectively highlight the more informative
coefficients from the less useful ones. Not only does this offer a performance improvement to
our network, but it also adds an additional layer of interpretability with channels corresponding
to particular coefficients. The spatial attention features highlight the salient features in the spatial
resolution of independent input channels. This differs from most computer vision problems with
RGB imagery that only have one heat map for the full image. As such, our network provides a more
transparent interpretation of how the spatial information in each input channel is used to form a
prediction. Implementation details of each component can be found in appendices A.2, A.3, and A.4.
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Combining Features The result of applying attention to the scattering coefficients of each input
channel yields C output filters, F, that are stacked to Uf ∈ RC×K×W×H . Following could be
any task specific transformation, e.g., additional convolutions, upsampling, residual connections,
etc., but for our tasks we show how to design a regression and classification head to have relatively
few trainable parameters. Specifically, we reshape Uf to have C ·K channels, which we reduce
to 16 via a pointwise convolution. This effectively combines the high-level features of each input
channel. The feature maps are flattened and input to a layer with 8 fully-connected units before a
single linear output. After the convolutional and fully-connected layers are a ReLU activation for
added non-linearity.

Table 1: Experimental results using n training samples and p parameters.

Scattering ResNet18 MobileNetV3 Conv.
n ↓ p→ (51.8K) (11.2M) (1.5M) (268.2K)

TC Intensity, rmse (R2)

1000 15.83 (0.59) 16.47 (0.56) 56.85 (-4.28) 17.51 (0.50)
5000 12.01 (0.76) 14.30 (0.67) 55.18 (-3.97) 13.34 (0.71)

10000 10.98 (0.80) 11.85 (0.77) 21.13 (0.27) 13.81 (0.69)
30000 10.35 (0.83) 10.74 (0.81) 13.07 (0.72) 11.68 (0.78)
47904 9.34 (0.86) 10.66 (0.81) 11.90 (0.77) 11.67 (0.78)

Lightning Occurrence, acc. (F1)

1000 86.04 (0.85) 73.68 (0.74) 62.46 (0.39) 78.27 (0.74)
5000 88.01 (0.87) 87.59 (0.87) 68.82 (0.55) 82.35 (0.82)

10000 88.87 (0.88) 86.33 (0.85) 81.46 (0.83) 84.37 (0.84)
50000 89.58 (0.89) 89.20 (0.88) 87.49 (0.87) 87.99 (0.87)

212604 90.46 (0.90) 90.51 (0.90) 86.87 (0.88) 89.57 (0.89)

3 Experiments

We demonstrate the performance of our network on two separate datasets, namely estimating wind
speeds from tropical storms and predicting the occurrence of lightning over previous observations.
Note that the experiments serve as an outline that could extend to other tasks that leverage multi-
channel inputs.

For each experiment we compare results to a handcrafted CNN (named Conv) inspired by [15]: three
convolutional layers with 8, 16, and 32 filters, each followed by ReLU and max pooling before a
fully-connected layer with 32 units and a linear output unit. Further inspiration is taken from (a subset
of) recent state-of-the-art vision models, namely ResNet18 [16] and MobileNetV3 (small) [17], to
better understand how larger and more complex networks compare with our proposed method.

3.1 Estimating Tropical Cyclone Intensity

Tropical cyclones are among the most devastating natural disasters, causing billions of dollars of
damage and significant loss of life every year. Predicting the track of these cyclones is well studied,
but there is still an imperative need to improve upon the forecast of intensity [18]. The NASA Tropical
Storm Wind Speed Competition [19] was released to study new automated and reliable methods of
forecasting intensity. The data are single-band infrared images (i.e., band-13 or 10.3 µm) captured
by the Geostationary Operational Environmental Satellite (GOES)-16 Advanced Baseline Imager
(ABI), with pixel values representing heat energy in the infrared spectrum, normalized to grayscale.
We leverage the temporal relationships of previous timesteps up to the point of prediction to estimate
the maximum sustained surface wind speed. Additional details can be found in Appendix B.1.

The state-of-the-art reaches a root-mean-squared error (RMSE) of 6.256 kn with an ensemble of 51
models [20]. We omit a direct comparison as interpreting these models would be increasingly difficult
for end users. The proposed scattering network, with significantly fewer parameters, performs best
overall with a minimum RMSE of 9.342 kn when using all available data for training. This is 12.35%
lower than the closest competitor, ResNet18, and 21.44% and 19.92% lower than MobileNetV3 and
Conv, respectively (Table 1). As such, the competing networks are more prone to overfit or lack
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the complexity to generalize, especially as the training size, n, decreases and for high-wind events
(see Figure 4 for additional comparisons). By leveraging the high-level features from the scattering
coefficients, we maintain competitive performance even with n = 5000 training samples.

The local attention features Ac and As are visualized for each input channel to reveal additional
insights to the network’s prediction (details on how figures are computed can be found in Appendix C).
The example shown in Figure 5 displays the spatial attention, As, with structural highlights having
greater weight generally in the center near the storm’s eyewall, where the strongest winds are usually
found. Interestingly, we see points with the greatest weight along the edge of the inner rainband at
timesteps t− 18 and t− 9, and at the eyewall at t. Regions with lower attention values are commonly
found in the environment between rainbands. Channel attention, Ac, generally shows an increase in
weight as the structure of the cyclone intensifies. We speculate this to correspond with the coefficients
that are strongest along the direction of edges in the imagery. This can be observed with timestep
t− 18 having lower first-order features and considerably less variability than t at different indices.

3.2 Short Range Lightning Prediction

Accurate short-term prediction of lightning onset can help protect life and mitigate the economic
impacts from disrupted outdoor work and natural fires by updating people on when to seek shelter
and the persistence of lightning events. The AI for Earth System Science Hackathon [21] opens this
challenge with data from GOES-16 ABI and aggregate lightning flash counts, lagged by one hour,
from the Geostationary Lightning Mapper (GLM). The input channels include the following four
water vapor bands: upper-level troposphere (band-8 or 6.2 µm), mid-level troposphere (band-9 or
6.9 µm), low-level troposphere (band-10 or 7.3 µm), and longwave (band-14 or 11.2 µm). The target
flash counts are converted to binary labels and used for predicting if lightning is present over the
previous hour. Additional dataset details can be found in Appendix B.2.

To the best of our knowledge there are no public benchmarks of this dataset. Thus, we conduct
experiments with only the aforementioned models. The effect of sample size on the scattering network
is minimal with 4.42% lower classification accuracy when 0.47% of the data is used for training. By
contrast, ResNet18, with 0.05% higher overall accuracy compared to the scattering network, has a
12.36% lower accuracy when the same n = 1000 samples are used for training (Table 1). Accuracy
is also 7.77% higher with the scattering network over the CNN using the same training samples.
Figure 6 displays the attention features for a given example. The spatial feature map, As, shows
that for bands 8, 10, and 14 there is higher weight on the convective cells, where lower brightness
temperatures are present. Band 9 displays a relative inverse of weight with higher values surrounding
the convective cell. The channel features, As, show that the scenes with a convective cell have fewer
first-order coefficients with higher weight. Specifically, there are dominant large scale wavelets, at a
single orientation, that are more important for the network’s prediction.

4 Conclusion

In this work we introduce an attention-based scattering network that can serve as the early layers of
a neural network. Our proposed separation scheme defines the most salient features and scattering
coefficients on individual input channels and can easily be visualized to better understand the use
of each channel. The result is a network that promotes interpretability and can easily be adapted to
other satellite-based tasks. Findings show that our network, even with fewer trainable parameters
than a linear model, achieves ∼ 20% lower error with better generalization than a standard CNN and
state-of-the-art vision models on a sample application of estimating tropical cyclone intensity. For
this dataset the network is effective under all constraints where data is limited. Our model shows
similar results on the short-term predictions of lightning occurrence with great advantages primarily
for small sample sizes, while there are diminishing returns for very large sample sizes.

In future work we seek to better understand the individual components of our network and to improve
upon the fusion of individual channels. By performing an ablation study we could identify which
attention features contribute most to the improved performance and have a more robust understanding
of computations. It would also be useful to evaluate other methods of combining high-level features,
such as an informed method for selecting the top-n weighted scattering coefficients after each
attention module or simpler aggregate functions. Lastly, as this method could be extended to different
tasks, we would like to explore the results of applying our method to other satellite-based applications.
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Appendix

A Implementation Details

A.1 Scattering Representations

The wavelet transform of a 2D signal, x(u) with u denoting the spatial index, at scale J is defined as

WJx(u) :=
{
x ∗ ϕ2J (u) , x ∗ ψλ(u)

}
λ∈ΛJ

, (1)

where ψλ(u) = 2−2jψ(2−jr−1u) with λ = 2jr for 0 ≤ j < J and r ∈ G+ as the discrete, finite
rotation group of R2 with L equally spaced angles from [0, π). The traditional mother wavelet, ψ(u),
in the scattering transform is the Morlet wavelet with a scaled Gaussian lowpass filter, ϕ2J (u) =
2−2Jϕ(2−Ju). A wavelet transform is translation covariant, and thus invariance measures are
extracted by computing a non-linear complex modulus, |x + iy| =

√
x2 + y2, and averaging the

result. The information lost during averaging is restored by applying a new wavelet decomposition
with scales j1 < j2, producing new invariants.

By following an iterative scheme we can compute m-th order coefficients, although here we compute
up to the second order as higher orders have negligible energy [5]. The zeroth-order coefficient is
computed as S0x(u) = x∗ϕ2J (u) and downsampled by a factor of 2J . To recover the high-frequency
information, we perform our first wavelet transform, apply a non-linear modulus, and average again.
Formally, the first-order coefficients are found by

S1x(λ1, u) := |x ∗ ψλ1
| ∗ ϕ2J (u). (2)

The resulting feature maps have the same resolution as S0 but with JL channels. Second-order
coefficients are computed similarly on S1 using all rotations but for smaller coefficients, denoted by

S2x(λ1, λ2, u) := ||x ∗ ψλ1
| ∗ ψλ2

| ∗ ϕ2J (u), (3)

which results in feature maps with 1
2J(J − 1)L2 output channels. Thus, if we assume x to be a

tensor of size (B,C,W,H), then the output via a second-order scattering transform, S2, with scale
J and L angles will have size (B,C, 1 + LJ + 1

2J(J − 1)L2,W/2J , H/2J). Note, for brevity, in
the following subsections we use W ×H to denote the spatial dimension that actually occur over
W/2J ×H/2J .

A.2 Channel Attention

Following the design of the squeeze and excitation block in [22], this attention module emphasises
the local channel information of individual inputs. We use S̃2 = [s1, s2, . . . , sK ] as the normalized
coefficients from the separated input channel of S2. First, we squeeze sk to obtain a global information
embedding z ∈ RK via global average pooling, where the k-th element, zk, is

zk :=
1

HW

H∑
i=1

W∑
j=1

sk(i, j). (4)

Thereafter, we aggregate the the embedding with the excitation operation to adaptively recalibrate
channel-wise features. This results in our channel attention weights Ac ∈ RK with scalar elements,
ak, computed as

Ac := σ(g(z;v,w)) = σ(δ(zv)w), (5)

where σ and δ refer to the sigmoid and ReLU functions, v ∈ RK×K
r , and w ∈ RK

r ×K . Weight
matrices v and w are initialized without bias parameters and use a reduction ratio of r = 16. This
ratio value was shown by [22] to be a sufficient starting parameter across multiple experiments. The
final output of the channel attention weighs the normalized coefficients with the scalar elements ak to
get Uc ∈ RK×H×W , where the k-th filter, uk, is

uk := ak · sk. (6)
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A.3 Spatial Attention

We implement a spatial attention module that predicts the importance of regions within the scattering
coefficients based on the image context, similar to [23, 12]. We first apply a pointwise convolution
to our normalized coefficients with r × 1× 1 filters, using a reduction ratio of r = 16, to compress
channel dimensionality. Spatial context is then extracted from the resulting feature map by convolving
three dilated convolutions of size 3× 3 with dilation factors of one, two, and three. These dilations
increase the receptive field while preserving the input resolution. This allows us to stack the four
feature maps to create a 4r ×W ×H tensor. This is reduced via a pointwise convolution using a
1× 1× 1 filter (per channel dimension) to yield the final spatial feature map As ∈ R1×W×H .

The spatial feature map and channel weighted coefficients are multiplied together to get a complete
local attention map, Us ∈ RK×W×H , as given by

Us := As ⊙Uc, (7)

where ⊙ is the Hadamard product. At a high level, Us contains all the normalized scattering
coefficients where each coefficient (i.e. k-th channel) is weighted and spatially scaled to a localized
region. This information is used downstream to highlight the positive or negative features of the
scattering transform.

A.4 Feature Fusion

The normalized scattering coefficients and local attention maps are combined in the fusion block at
the end of an attention module. We follow a method similar to [24] and [12] to get an output from the
weighted average of features. A single parameter, w1, with an initial value of 0.5 is trained to assign
contributions of each pathway. Mathematically,

F := w1U
s + (1− w1)S̃

2, (8)

where w1 is clamped on the interval [0, 1] after each update to ensure the contributions sum to one.

B Dataset Details

B.1 Tropical Cyclones

{

Figure 2: Input data of size (1× 3× 128× 128) with stacked channel-wise timesteps. The target variable is
the wind speed associated with the last frame.

The topical cyclone dataset contains a collection of satellite imagery for over 600 storms in the
Eastern Pacific and Atlantic Oceans from 2000 to 2019. Test data consists of imagery from storms
not included in the training data as well as held out samples from later in a storm’s life cycle.
Since observations from temporal data are not independent, we seek to reduce the implications of
autocorrelations (i.e., from trends and seasonality) and holdout imagery from the last 20% of each
storm to create the validation set.

To extend from the single channel imagery to multi-channel inputs we leverage the temporal rela-
tionships of previous timesteps up to the point of prediction. Three frames separated by a nine step
interval (i.e., t− 18, t− 9, and t) are stacked to create a 3× 128× 128 input sample using the last
frame’s wind speed as the target value (Figure 2). Inputs are created following the next t+1 timestep
and repeated over all datasets yielding 47, 904 training, 7, 119 validation, and 37, 913 test samples.
These images are min-max normalized to the interval [0,1] to stabilize the result of the scattering
transform. Target wind speeds are z-score normalized to have zero mean and unit variance using
the statistics of the training data. Predicted and target values are unnormalized after inference for
evaluation.
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When subsampling the training data to smaller values of n, we define m = 11 equally spaced
boundaries, B = {r : r = 15 + 17k | k = m − 1,m − 2, . . . , 0}, such that n total samples that
comprise the entire training dataset are loosely divided into groups following Bi ≤ t > Bi+1 for
targets t. Data within each group are randomly sampled and may borrow from the Bi+1 boundary
to ensure an equal distribution of target wind speeds. Table 1 defines the values of n used in our
experiments.

B.2 GOES-16 Lightning

{

Figure 3: Input data of size (1× 4× 64× 64) with stacked channel-wise brightness temperatures. The target
variable is a binary label indicating the presence of lightning over the previous hour.

The GOES-16 data consists of 32× 32 image patches (for each band) across the Continental United
States (between latitudes 29.09° and 48.97° and longitudes −97.77° and −82.53°) at 20 minute
intervals from 2019-03-02 through 2019-10-01. We perform bilinear interpolation to each band to
scale inputs to the resolution of 64 × 64 for more accurate spatial attention features. This is done
because the scattering transform yields coefficients of resolution W/2J ×H/2J (i.e., 8 × 8) and
resolutions too small will lose detail. The brightness temperatures, measured in kelvins, are min-max
normalized on the interval [0, 1] using the statistics of the training data. In total there are 212, 604
training, 212, 604 validation, and 199, 157 test samples. Figure 3 displays an example input sample
with each stacked channel-wise bands.

Flash counts from the GLM have a strong positively skewed distribution (i.e., 4.47± 18.22) across
all training samples. When converting to binary labels, where true when flash counts are greater
than zero, we get a better distribution of targets with a slight class imbalance of 63.49% training
samples having lightning. When subsampling the training data we reduce bias by maintaining the
class distribution such that there are n total samples ranging from 1, 000 to 212, 604 (Table 1).

C Feature Visualizations

C.1 Spatial Attention Features

The separation of attention modules yield a spatial attention feature map, As, for each input channel
in our data. This map can be visualized via a bilinear upsampling from W/2J ×H/2J to our original
input resolution W ×H . The scaled feature map can be superimposed on the original data, and the
detail of this map will depend on the scale, J , of the scattering transform.

C.2 Channel Attention Features

For first-order coefficients, the polar radius is inversely proportional to scale 2j1 for the wavelet
ψλ1

with an angle corresponding to the rotation r1 (approximating the frequency bandwidth of the
Fourier transform ψ̂λ1). Thus, each quadrant can be indexed by (r1, j1). Second-order coefficients
are displayed similarly by subdividing each first-order quadrant, (r1, j1), along the polar radius
with j1 < j2 < J for all L angles, which can be indexed by (r1, r2, j1, j2). However, instead of
visualizing individual scattering coefficients, we display each scalar element in Ac (normalized
between [0, 1]) corresponding to these indices and input channel.

C.3 Gradient Based Methods

The scattering transform is differentiable, and thus, allows for evaluations of post hoc explainability
methods. We demonstrate an example of how gradients can be computed with respect to an individual
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input pixel by computing integrated gradients for our example input. Following the work of [25], we
establish a baseline of all zeros and compute importance scores for each pixel in the input. While we
show integrated gradients as an example, alternative post hoc explainability methods, e.g., GradCAM,
layer-wise relevance propagation, Shapley values, etc., could be used to evaluate this network.

D Supplemental Figures

(a) Scattering Network (b) ResNet18

Figure 4: Target vs. predicted wind speeds from the (a) proposed scattering network and (b) ResNet18 network,
trained using all the available data. The greatest errors are observed with the highest intensity samples, and
evidently, is where ResNet18 performs worst. Target wind speeds >140 kn have an RMSE = 51.630 kn from
ResNet18 as compared to an RMSE = 27.231 kn from the scattering network.

(a) IG (b) As (c) first-order (d) second-order

Figure 5: Feature visualizations from the tropical cyclone intensity data.
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(a) IG (b) As (c) first-order (d) second-order

Figure 6: Feature visualizations from the short-term lightning prediction data.
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