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Motivation

Graph neural networks (GNNSs) are a natural fit for location data:
spatial relationship can be represented graphically, and they scale
well to high-dimensional data.
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Motivation

Recent advances in transformers and positional encoding allow for
the learning of meaningful latitude / longitude coordinate

embeddings
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Mai, Gengchen, et al. "Multi-Scale Representation Learning for Spatial Feature Distributions
using Grid Cells." International Conference on Learning Representations. 2020.



Method

We combine GNNs with latitude / longitude positional encoders
and introduce PE-GNN
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PE-GNN works with any GNN backbone —
here a Graph Convolutional Network (GCN)
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« Coordinate embeddings are concatenated with other node

features

* GNN and Positional encoder weights are learned end-to-end
through the loss on the downstream task
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« We reinforce the learning of spatial dependencies through
auxiliary prediction of spatial autocorrelation

Klemmer, Konstantin, and Daniel B. Neill. "Auxiliary-task learning for geographic data with
autoregressive embeddings." Proceedings of the 29th International Conference on Advances
in Geographic Information Systems. 2021.



Results

We test PE-GNN on two climate-relevant, real-world tasks:

« Spatial interpolation of elevation for constructing digital
elevation models (DEMs)

 Mean temperature prediction from location and precipitation
data



Results

PE-GNN outperforms different existing GNN methods: GCN, GAT,
GraphSAGE, KCN
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(a) Real values and predictions using GraphSAGE and PE-GraphSAGE.
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(b) Test error curves of GCN, GAT and GraphSAGE based models, measured by the MSE metric.
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Reach out anytime. &
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