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Abstract

Modeling spatial dependencies in geographic data is of crucial importance for the
modeling of our planet. Graph neural networks (GNNs) provide a powerful and
scalable solution for modeling continuous spatial data. However, in the absence of
further context on the geometric structure of the data, they often rely on Euclidean
distances to construct the input graphs. This assumption can be improbable in
many real-world settings, where the spatial structure is more complex and explic-
itly non-Euclidean (e.g., road networks). In this paper, we propose PE-GNN, a
new framework that incorporates spatial context and correlation explicitly into
the models. Building on recent advances in geospatial auxiliary task learning and
semantic spatial embeddings, our proposed method (1) learns a context-aware
vector encoding of the geographic coordinates and (2) predicts spatial autocor-
relation in the data in parallel with the main task. We show the effectiveness
of our approach on two climate-relevant regression tasks: 3d spatial interpola-
tion and air temperature prediction. The code for this study can be accessed via:
https://github.com/konstantinklemmer/pe-gnn.

1 Introduction

Geographic data is characterized by a natural geometric structure, which often strongly affects the
observed spatial pattern. While traditional neural network approaches do not have an intuition
to account for spatial dynamics, graph neural networks (GNNs) can represent spatial structures
graphically. The recent years have seen many applications leveraging GNNs for climate-related
modeling tasks in the geographic domain, such as precipitation forecasting [2] or traffic modeling
[3]. Nonetheless, as we show in this study, GNNs are not necessarily sufficient for modeling
complex spatial effects: spatial context can be different at each location, which may be reflected in
the relationship with its spatial neighborhood. The study of spatial context and dependencies has
attracted increasing attention in the machine learning community, with studies on spatial context
embeddings [17, 22] and spatially explicit auxiliary task learning [14].

In this study, we seek to merge these streams of research. We propose the positional encoder graph
neural network (PE-GNN), a flexible approach for better encoding spatial context into GNN-based
predictive models. PE-GNN is highly modular and can work with any GNN backbone. PE-GNN
contains a positional encoder (PE) [20, 17], which learns a contextual embedding for point coordinates
throughout training. PE-GNN also generalizes the spatial autocorrelation auxiliary learning approach
proposed by [14] to continuous spatial data.

Lastly, we train PE-GNN by constructing a novel training graph, based on k-nearest-neighborhood,
from a randomly sampled batch of points at each training step. This forces PE to learn generalizable
features, as the same point coordinate might have different spatial context (neighbors) at different
training steps.
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Figure 1: PE-GCN contains a (1) positional encoder network,
learning a spatial context embedding throughout training which is
concatenated with node-level features and (2) an auxiliary learner,
predicting the spatial autocorrelation of the outcome variable
simultaneously to the main regression task.

Recently, there has been a rise
of research on applications of
neural network models for spa-
tial modeling tasks. More specif-
ically, graph neural networks
(GNNs) are often used for these
tasks with the spatial data rep-
resented graphically. GNNs of-
fer flexibility and scalability ad-
vantages over traditional spatial
modeling approaches such as
Gaussian processes [4]. Spe-
cific GNN architectures includ-
ing Graph Convolutional Net-
works [13], Graph Attention Net-
works [21] and GraphSAGE [8]
are powerful methods for infer-
ence and representation learning
with spatial data. Recently, GNN
approaches tailored to the spe-

cific complexities of geospatial data have been developed. The authors of Kriging Convolutional
Networks [2] propose using GNNs to perform a modified kriging task. [8] apply GNNs for a spatio-
temporal Kriging task, recovering data from unsampled nodes on an input graph. We look to extend
this line of research by providing stronger, explicit capacities for GNNs to learn spatial structures.
Additionally, our proposed method is highly modular and can be combined with any GNN backbone.

Through many decades of research and applications–from ecology to epidemiology–a myriad of
measures, metrics, and statistics have been developed to cover a broad range of spatial interactions.
Measures of spatial autocorrelation such as Moran’s I [1] are particularly popular. Specifically, they
have already been shown to be useful for improving neural network models through auxiliary task
learning [14], model selection [15], embedding losses [16] and localized representation learning
[7]. Recent years have also seen the emergence of neural network based embeddings for geographic
information. Often trained in an unsupervised fashion, many of these embeddings are learnt from
spatial context such as points-of-interest (POIs) or local social media data [7, 22, 17] and maybe be
deployed for different downstream tasks.

3 Method

Graph Neural Networks with Geographic Data We elaborate on our method using Graph
Convolutional Networks (GCNs) as an example backbone for our novel PE-GNN approach. We
define a datapoint pi = {yi,xi, ci}, where yi is a continuous target variable (scalar), xi is a vector
of predictive features and ci is a vector of point coordinates, mapping the datapoint into geographic
space (e.g., latitude and longitude values). Using a k-nearest-neighbor approach we create a graph
G = (V,E), consisting of a set of vertices (or nodes) V = {v1, . . . , vn} and a set of edges
E = {e1, . . . , em}, assigned by the adjacency matrix A. Each vertex i ∈ V has respective node
features xi and target variable yi. As proposed by [13], a GCN layer can now be defined as

H(l) = σ(ĀH(l−1)W(l)), l = 1, . . . , L (1)

where σ describes an activation function (e.g., ReLU), Ā the normalized adjacency matrix and W(l)

is a weight matrix parametrizing GCN layer l. The input for the first GCN layer H(0) is given by the
feature matrix X containing all node feature vectors x1, . . . ,xn. The assembled GCN predicts the
output Ŷ = GCN(X,ΘGCN ) parametrized by ΘGCN .

Context-aware spatial coordinate embeddings GCNs struggle with tasks that explicitly re-
quire learning of complex spatial dependencies. Their performance is highly susceptible to the
graph definition (e.g., the chosen distance metric, number of neighbors). For example, we show
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in our experiments that simple GCNs are not able to solve simple spatial interpolation tasks, i.e.,
predicting a continuous outcome variable from the point coordinates only. We propose a novel
approach to overcome these difficulties, by devising a new positional encoder module, and learning
a flexible spatial context encoding for each geographic coordinate, motivated by recent advances
in transformers and spatial representation learning. Specifically, we define a positional encoder
PE(C, σmin, σmax,ΘPE) = NN(ST (C, σmin, σmax),ΘPE), consisting of a sinusoidal trans-
form ST (σmin, σmax) and a fully-connected neural network NN(ΘPE), parametrized by ΘPE .
Following the intuition of transformers [20] for geographic coordinates [17], the sinusoidal transform
ST is a concatenation of scale-sensitive sinusoidal functions at different frequencies. The output from
ST is then fed through the fully connected neural network NN(ΘPE) to transform it into the desired
vector space shape, creating the coordinate embedding matrix Cemb = PE(C, σmin, σmax,ΘPE).
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Figure 2: 3d road: MSE bar plots of mean performance and 2σ confi-
dence intervals obtained from 10 different training checkpoints.

Auxiliary learning of
spatial autocorrelation
A further particularity of
geographic data is that it
often exhibits spatial auto-
correlation: observations
are related, in some shape
or form, to their geographic
neighbors. Measures of
spatial autocorrelation have
recently been successfully
integrated into neural net-
works for discrete spatial
data (images) [14, 16],

however no such approach exists for continuous spatial coordinates. Spatial autocorrelation can be
measured using the Moran’s I metric of local spatial autocorrelation [1]. For our outcome variable yi,
it is defined as:

Ii = (n− 1)
(yi − ȳi)∑n

j=1(yj − ȳj)2

n∑
j=1,j ̸=i

ai,j(yj − ȳj), (2)

where ai,j ∈ A denotes adjacency of observations i and j.

As proposed by [14], predicting the Moran’s I metric of the output can be used as auxiliary task
during training. Auxiliary task learning [19] is a special case of multi-task learning, where one
learning algorithm tackles two or more tasks at once. The approach is commonly used, for example
in reinforcement learning [6] or computer vision [10, 11]. Translated to our GCN setting, we seek
to predict the outcome Y and its local Moran’s I metric I(Y) using the same network, so that
[Ŷ, ˆI(Y)] = GCN(X). The local Moran’s I metric is highly scale-sensitive which can limit its
power [14, 5, 18]. To overcome this issue, we propose to train our model on a new, randomly sampled
batch of geographic coordinates at each training step. The Moran’s I for point i can thus change
throughout iterations, reflecting a differing set of more distant or closer neighbors. Altogether, we
refer to this altered Moran’s I as “shuffled Moran’s I".

Positional Encoder Graph Neural Network (PE-GNN) We now assemble the different modules
of our method and introduce the Positional Encoder Graph Neural Network (PE-GNN). Assuming a
batch B of randomly sampled points p1, . . . , pnbatch

∈ B, a spatial graph is constructed from point
coordinates c1, . . . , cnbatch

using k-nearest-neighborhood, resulting in adjacency matrix AB . The
point coordinates are then subsequently fed through the positional encoder PE(ΘPE), consisting of
the sinusoidal transform ST and a single fully-connected layer with sigmoid activation, embedding
the 2d coordinates in a customizable latent space, returning vector embeddings cemb

1 , . . . , cemb
nbatch

=

Cemb
B . We then concatenate the positional encoder output with the node features, to create the input

for the first layer of our GCN. To integrate the Moran’s I auxiliary task, we compute the metric I(YB)
for our outcome variable YB at the beginning of each training step. Prediction is then facilitated by
creating two prediction heads, here linear layers, while the graph operation layers (e.g. GCN layers)
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are shared between tasks. Finally, we obtain predicted values ŶB and ˆI(YB). The loss of PE-GCN
can be computed with any regression criterion, for example mean squared error (MSE).

4 Experiments

Model Air Temp. 3d Road
MSE MAE MSE MAE

GCN [13] 0.0225 0.1175 0.0169 0.1029
PE-GCN λ = 0 0.0040 0.0432 0.0031 0.0396
PE-GCN λ = 0.25 0.0037 0.0417 0.0032 0.0416
PE-GCN λ = 0.5 0.0036 0.0401 0.0033 0.0421
PE-GCN λ = 0.75 0.0040 0.0429 0.0033 0.0424
GAT [21] 0.0226 0.1165 0.0178 0.0998
PE-GAT λ = 0 0.0039 0.0429 0.0060 0.0537
PE-GAT λ = 0.25 0.0040 0.0417 0.0058 0.0530
PE-GAT λ = 0.5 0.0045 0.0465 0.0061 0.0548
PE-GAT λ = 0.75 0.0041 0.0429 0.0062 0.0562
GraphSAGE [8] 0.0274 0.1326 0.0180 0.0998
PE-GraphSAGE λ = 0 0.0039 0.0428 0.0060 0.0534
PE-GraphSAGE λ = 0.25 0.0040 0.0418 0.0059 0.0534
PE-GraphSAGE λ = 0.5 0.0043 0.0461 0.0060 0.0536
PE-GraphSAGE λ = 0.75 0.0036 0.0399 0.0058 0.0541
KCN [2] 0.0143 0.0927 0.0081 0.0758
PE-KCN λ = 0 0.0648 0.2385 0.0025 0.0310
PE-KCN λ = 0.25 0.0059 0.0593 0.0037 0.0474
PE-KCN λ = 0.5 0.0077 0.0664 0.0077 0.0642
PE-KCN λ = 0.75 0.0122 0.0852 0.0110 0.0755
Approximate GP 0.0481 0.0498 0.0080 0.0657
Exact GP 0.0084 0.0458 - -

Table 1: Spatial Interpolation: Test MSE and
MAE scores from four different datasets, using
four different GNN backbones with and without
our proposed architecture.

Data We evaluate PE-GNN and baseline com-
petitors on two climate relevant, real-world ge-
ographic datasets: The air temperature dataset
[9] contains the coordinates of 3, 000 weather
stations around the globe. Here, we seek to pre-
dict mean temperatures y from a single node
feature x, mean precipitation, and locations c.
Air temperature prediction is relevant to many-
climate related applications, from forecasting
crop growth under increasingly extreme weather
conditions, to the modeling of animal movement
and behaviour. The 3d road dataset [12] pro-
vides over 430, 000 3-dimensional spatial co-
ordinates (latitude, longitude, and altitude) of
the road network in Jutland, Denmark. Here, al-
titude y is predicted using latitude and longitude
coordinates c. Such digital elevation models
(DEMs) also have many applications in climate
relevant domains, from modeling flooding expo-
sure to species distribution models.

Baselines We compare PE-GNN with four
different backbones: The original GCN formu-
lation, introduced by [13] and outlined in the

Methods section, graph attention mechanisms (GAT) [21], GraphSAGE [8] and Kriging Convolu-
tional Networks (KCN) [2]. We compare the naive version of all these approaches to the same four
backbone architectures augmented with our PE-GNN modules. We also provide Gaussian Process
baselines. For all approaches, we compare a range of different training settings and hyperparameters.

Results The results of our experiments are shown in Table 1. Figure 2 shows MSE bar plots of
the different methods on the 3d road dataset. Generally, PE-GNN substantially improves over naive
baselines. Most of the improvement can be attributed to the positional encoder, however the auxiliary
task learning also has substantial beneficial effects in some settings, especially for the KCN models.
The best setting for the task weight hyperparameter λ seems to heavily depend on the data, which
confirms findings by [14]. While being substantially more scalable, PE-GNN also performs well
compared to Gaussian Processes.

5 Conclusion

With PE-GNN, we introduce a flexible, modular new GNN-based learning framework for geographic
data. PE-GNN leverages recent findings in embedding spatial context into neural networks to improve
predictive models. Our empirical findings confirm a strong performance. This study highlights how
geographic domain expertise can help improve machine learning models for Earth observation data, a
task relevant to many climate-related applications.
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