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Abstract

This paper develops a novel data set for three key resources use; namely, food,
water, and energy, for 9000 cities globally. The data set is then utilized to develop
a clustering approach as a starting point towards a global classification model.
This novel clustering approach aims to contribute to developing an inclusive view
of resource efficiency for all urban centers globally. The proposed clustering
algorithm is comprised of three steps: first, outlier detection to address specific city
characteristics, then a Variational Autoencoder (VAE), and finally, Agglomerative
Clustering (AC) to improve the classification results. Our results show that this
approach is more robust and yields better results in creating delimited clusters with
high Calinski-Harabasz Index scores and Silhouette Coefficient than other baseline
clustering methods.

1 Introduction

Cities are both the drivers of climate change and the major component of the solution. Yet, many
cities are lacking direction toward a climate-positive and sustainable future. The latest IPCC report
has underlined the role of international climate networks between urban centers [1]], [2]] such as city
networks. The main limitation to achieving efficient city networks is that many cities are relatively
small and lack the resources to know what solution set is most appropriate for them and how to
connect to other cities to share their stories and journey toward sustainability. This is problematic
as smaller cities face different barriers from their global counterparts [3[], and these cities are likely
to define urbanization’s future, especially in the Global South [4]. This paper directly addresses
this dichotomy by using machine learning to develop a global classification approach for cities
into various profiles based on quantitative characteristics that can enhance the understanding of
urbanization pathways.

Related Work: Most cities’ classification studies have mostly focused on hierarchical data-driven
methods and do not move beyond comparing a limited number of cities with territorial similarities or
development levels [15]. To our knowledge, a clustering approach for cities worldwide has not been
fully explored in the literature to date. Such global classification has been challenging due to the lack
of available data on a global scale. Thus, this paper develops a novel data set and a broad definition
of city boundaries to develop a clustering approach for 9000 cities worldwide. The work presented in
this paper is divided into two key components. First, the development of global prediction models for
resource use (energy, water, food) for 9000 cities globally to fulfill the current gap in data needs to
achieve inclusive clustering of cities. Second, a novel clustering approach that performs better than
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baseline clustering and identifies possible city networks that can aid in the global climate change
discussion needs and resource efficiency opportunities.

2 Data and Methods

2.0.1 Data

In this paper, we developed a machine learning approach to predict energy, water, and food consump-
tion for a total of 9,000 cities around the world. This data - for a comprehensive 9000 cities around
the world - simply does not exist. Thus, we collected resource data for a subset of cities around
the world and processed each dataset to construct our predictive models. For further information
regarding the data, methods, and evaluations, refer to appendices[A] [B] Figure 2] portrays our decision
flow process with picking the best resource estimation model.

2.0.2 Methods

Energy Consumption Model: To generate a comprehensive energy estimation model, we used city
light radiance as a proxy. We found that city light radiance captured in satellite images approximates
well the energy consumption of cities, so we employed a city light radiance proportion model that
estimates the consumption of a specific city based on the city’s light radiance percentage of the whole
country multiplied by the country’s population proportion and total energy consumption following
previous work in [6], [[7], [8]] using equation[I} Our model selection analysis is presented in appendix
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L; corresponds to light radiance, P; to population, E; to energy, and E; to National Average Energy
consumption for country j that includes city 3.

Water Consumption Model: To remedy the lack of observational data for water consumption, we
limited our model search space to models that work well with little data. Inspired by Fan et al. [9], we
performed feature selection to pick a subset of features that first, accurately depict water consumption,
second, are generalizable enough to be used for 9,000 cities. For example, the number of washing
machines per household was used in [9]], but could not be used for 9,000 cities simply because it is
unavailable for this large set of cities. The model that was picked to estimate water consumption was
Extremely Randomized Trees (ERT) [10], which is similar to other tree based ensemble algorithms
such as random forests, but was found to perform and generalize better. The ERT model incorporated
total population, land area (from [11]), precipitation (from [[12]]), temperature (from [13]]), and water
price (from [14]) which corresponded to our two aforementioned conditions. For further information
refer to appendix [A.3]

Food Consumption Model: Findings from the literature indicated that the city’s food consumption
is highly correlated with population. These findings prompted us to develop a population proportion
model to estimate food consumption following the same approach in [8]. We define food consumption
as the average daily consumption of calories. The population proportion output is then used to
estimate food consumption via linear regression as seen in equation [2} For further information, refer

to appendix
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P; and F;; correspond to population and food consumption, respectively. 8’s are regression coefficients
and ¢; is the error for city ¢. I; and P; correspond to food consumption and population for country j
that includes city %
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2.0.3 Initial Results and Evaluation

The predictions of our models correspond to an estimation of energy, water, and food consumption
across 9,000 cities around the world. These predictions form a novel dataset that leverages the power
of machine learning research. To quantify the performance of each model (i.e. our new dataset),
we used three benchmarks: standard regression metrics (MAPE and R? on the out of sample set),
statistical characteristics (e.g. comparing mean, median, etc. between the original data and the
predicted data), and a Ratio Score metric [B.3] which we have developed specifically for this task.
Table presents the results for MAPE, RZ, and Ratio Score benchmarks used to compare the ground
truth dataset and the predicted set, evaluated on the test set. Our comprehensive benchmark on the
new dataset and models’ performance is described in appendix [Bl We discuss he limitations of our

predictions in[B.4]

Table 1: Evaluation of the predicted dataset on the out of sample test set

Dataset/Predictions Benchmark
Resource/Metric MAPE R? Ratio Score
Energy 67.7% 0.77 89.5%
Water 13% 0.63 20.3%
Food 22.5% 0.71 30.2%

2.0.4 Clustering

The second step is to use outputs from the resource use prediction models to develop the global
classification. Here, we developed the clustering approach over three key components: 1) outlier
detection (OD), 2) encoding with Variational AutoEncoders (VAE) [15], and 3) agglomerative
clustering [[16]. The intuition behind using an outlier detector is that some variables like population
and area obey Zipf’s Law [17], where there is an exponential increase in the values of the variables
for major cities per country. Therefore, through the outlier detector, we exclude the highest 2%
(x is determined empirically) of the data in the attributes of interest. This step has allowed us to
separate the data into an outlier and a non-outlier group based on the attributes we want. Next, we
apply a VAE based transformation [15] before applying the clustering algorithm. Training a VAE
as a pre-processing step makes it possible to perform a non-linear transformation that encodes the
data into a finer, more separated, and denoised representation. We train the VAE until convergence
to reconstruct the input data using KL-Divergence and Mean Square error objectives, then use the
encoder part to transform the data (to the VAE latent space). We use the Adam optimizer [18] with a
learning rate of 0.001 for training. For the clustering algorithm, we try the standard AC and other
standard clustering methods, which are included in appendix [C]

3 Initial Clustering Results

To assess the performance of the proposed approach, clusters are evaluated using the Calinski-
Harabasz Index (CHI) [19] and the Silhouette Coefficient (SC) [20]]. These are standard ways of
evaluating clustering as they measure how dispersed/close the points in the clusters are to each other.
CHI is unbounded while SC ranges from -1 to 1. Scores for our method with VAE, and without VAE
(namely "Direct Clustering") are shown in Table 2}

Table 2: Evaluation of different combination of clustering. The higher score the better.

Clustering Algorithm Performance
Metric/Algorithm AC only OD+AC OD+VAE+AC
Calinski-Harabasz Index || 4345.80 2546.07 42495.66
Silhouette Coefficient 0.45 0.17 0.47

As the table demonstrates the results of the approaches, the VAE + OD + AC (extracting outliers,
passing them to VAE and clustering them) produced the highest score for CHI (~9.7 times more than
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just using AC). Thus, our analysis suggests that our novel, three fold clustering method performs
better classification on our novel dataset than baseline clustering. For visualization and interpretability,
we use spider plots to visualize the per-cluster mean of the attributes. This makes it easier to interpret
the attributes that the clusters were divided based on. Figure[I|shows three example clusters in the
outlier group. For instance, cluster two includes cities at the top 500 range in food consumption
and medium range in water use, like Oklahoma (US), Nashville (US), Columbus (US), Buenos
Aires (ARG), and London (UK). Many cities of this cluster are already working together to address
climate change under the C40. Each city has drafted plans according to their needs; however, why
couldn’t they write plans together when they have similar needs? This is one way our proposed global
clustering approach can help cities address their climate challenges.
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Figure 1: Spider plots for the three example clusters in the outliers group

4 Conclusion

The proposed global clustering approach for cities using ML techniques has two practical implications.
First, it will provide space for a comprehensive assessment of cities globally and help identify the
aggregate contribution of urban areas to global climate challenges. Second, global clustering of cities
will allow the comparison between cities with similar features and derive pathways for sustainable
urban growth, resource efficiency, and climate change challenges. The data presented in this paper
are novel and unique as they are fulfilling gaps in data scarcity for the majority of cities globally that
limits the opportunities for resource efficiency and sustainable urban growth. This assessment for
resource use in all cities globally has not been done before, and we believe it will pave the way for a
better understanding of opportunities for resource efficiency globally and aid better policy design.
The goal for future work is the investigation and identification of ‘track shifting’ mechanisms and
policy interventions that could facilitate urban sustainability.
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Appendix A Data and Model Selection

A.1 Data

In this paper, we developed a machine learning approach to predict energy, water, and food consump-
tion for a total of 9,000 cities around the world. That resulted in three models, each specialized in
predicting one resource component using particular sets of features. We adopted a novel approach
that relied on different data sources like city night light radiance from satellite images, population,
land area, and others, and we used these variables as a proxy to estimate energy, water, and food
consumption models. For each model, we experimented and expanded on similar work that was done
before in literature, such as choosing variables, using ML models and proportion (non ML) models,
and evaluated them using the benchmarks we designed.

Propartion (non ML)
maodels & Data/variables

for proportion modals : Ganarate/oredict new
I P Feed dataset to clustering
— datasat
ML regression modals :

& Data’variables for ML
models

faature & madal selecion, pick best

Figure 2: Model & feature selection decision flow

Previous energy, food, and water consumption data per city - for a comprehensive 9000 cities around
the world - simply does not exist. Thus, we collected resource data for a subset of cities around the
world and processed each dataset to construct our predictive models. We used [21] to obtain energy
use values for 155 cities, and [22]] to obtain water use for 172 cities. For food, we used [23]]. Since
the data and context varied greatly between the three resources, we treated each case separately and
designed our predictive models accordingly.

A.2 Energy

Data: Countries report their energy consumption values each year [24]]. However, little information
is reported on the city-level, especially for the units outside the OECD region. We used a random
sample of 157 cities [21] that included the average electricity use per capita in kWh for the year of
2012.

Feature Selection and Prepossessing: There are many variables that intuitively correlate with
energy consumption such as the available income resources and the location of the city. Horta and
Keirstea [8]] attempted downscaling the energy consumption from the country to city-level before,
but they performed their analysis on London and near-London cities only. Yet, they mentioned
several approaches to tackle this challenge such as fitting population-proportion or regression models.
We gathered information based on the literature of what affects the energy consumption, and we
found out that population, GDP per capita, green house gas emissions, and temperature, [25]] were
the biggest four indicators of energy consumption [6], [7]. Therefore, we tried to gather as much
information on these variables as possible in one universal dataset to perform our analysis. The list of
the final variables included: population, population density, area, percentage of area covered by water,
percentage of area covered by land, average temperature, city-light radiance, and some vegetation
indices. Our methodology was to look for variables that are available for the 9000 cities, so we can
generalize our findings.

The selection criteria for these variables are based on the following steps

1. Try different statistical feature selection methods (namely, forward selection, backward
selection, and best subset), manually look for features that are consistently top performing
across different those feature selection ways, pick them as our best subset.

2. Out of this best subset of features, pick those who can be used for 9000 cities (i.e. if we
have a value for each city in our city list of 9000 cities).
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Model Selection: Inspired by the work done in [8]], we replicated the proposed methods; namely
a linear regression with population model, and a multivariate regression with population and area.
We benchmarked them with a proportion model we designed using city-light radiance based on a
previous study by Letu et al[26]. We created that model by estimating the proportion of the city light
radiance of the city to its entire country then multiplied by the total consumption for the country. This
method estimated energy consumption values for an entire city. Moreover, we wanted to replicate
this approach on the capita-level to see if our assumptions hold.

Chosen Model: City-Light Proportion per capita As tables suggest, the city-light proportion
model performed better than the regression ones on the city-scale and the capita-scale across all our
statistical metrics presented in[B.1] Tables 3] @] portray our results. The scores are the average of the
metric on 10 different random test sets, and each evaluation on one test set was done via 10-cross
validation

Table 3: Model Performance evaluated on a test set on energy consumption per capita

Model Benchmark Energy per Capita
Model/Metric MAPE R? Ratio Score
Linear Regression with city light and land 193.8% 0.07 234%
Linear Regression with population and land 212% 0.05 264.8%
Population Proportion Model 67.7 % 0.77 89.5%

Table 4: Model Performance evaluated on a test set on energy consumption per city

Model Benchmark Energy City-Level
Model/Metric MAPE R? Ratio Score
Linear Regression with city light and land 58.9% 0.73 89.7%
Linear Regression with land and population 99.9% 0.03 634.5%
Population Proportion Model 67.7% 0.52 89.5%

A note on the results: While the results we obtained for energy consumption are not relative high
(compared to food and water), they are consistent. Our proportion model suggests a linear correlation
between our estimation and the ground truth value, albeit a relatively high error rate (MAPE, ratio
score). The main challenge was energy consumption was the very little data points we had (157 data
points), which restricted our use of more advanced ML.

A.3 Water

Data: Since water consumption data per city for a broad range such as 9000 is not available, we used
Urban Household Water Consumption Data [22]], which provided water consumption data (liters per
capita per day) for years 2014 and 2015. The data corresponded to 289 data points, of which 119
were for 2014 and 170 for 2016. Out of all 289 data points, there were 172 unique cities.

Feature Selection and Prepossessing: Previous studies have suggested various drivers of water
consumption. Domestic water use is highly complex and diverse because it can be affected by many
factors. For example, one view is that water consumption is highly affected by population: with
increasing city population, global water consumption in cities has increased by approximately six-fold,
which was twice the rate of population growth [27]]. Other views are climate and meteorology [28]],
socio-demographic profiles [29], household characteristics [30]], water availability and conservation
[31]], and pricing and policies [32]. To determine the right subset of features for our water consumption
model, we generated a comprehensive dataset by combining the water consumption data we had
with the Euromonitor data [23]], which provided us with 62 different features, which span across
domains such as socioeconomic, meteorological factors, water supply, etc. The water consumption
data we used and Euromonitor data did not align perfectly (i.e. some cities were in one dataset but
not the other, and vice versa), thus we had to eliminate cities with no information. The finalized
dataset included 172 datapoints across 62 features. To our understanding, using proportion models to
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estimate water consumption was not supported in the literature review, thus we focused on machine
learning models.

Our feature selection process included two steps:

1. Try different statistical feature selection methods (e.g. Recursive Feature Elimination with
random forest regressor), manually look for features that are consistently top performing
across different those feature selection ways, pick them as our best subset.

2. Out of this best subset of features, pick those who can be used for 9000 cities (i.e. if we
have a value for each city in our city list of 9000 cities)

Our methodology is summarized as following: after trying different types of feature selection
processes (namely, wrapper: Recursive Feature Elimination with different types of estimators,
embedded: lasso regression) we picked a subset that consisted of precipitation, GDP per capita, death
rate, land area, population growth, water price, temperature, birth rates, Consumer Price Index, total
population.

Among those, we selected only those which we have information for 9000 cities. For example, death
rates was consistently found to be a strong predictor for water consumption, but many cities around
the world do not provide that data. Our finalized subset of features included precipitation (2015),
land temperature (two meters above the ground, for 2015), land area (2015), total population (2015),
and water price (in retail stores, a value that was similar between cities within the same country).

This dataset was normalized, since city values, naturally, have a wide range. Outliers in these
scenarios are meaningful and thus were not excluded. The water consumption distribution was right
skewed as shown in figure 3] thus the models were evaluated on a log scale of the water consumption.
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Figure 3: Water Consumption Distribution. The vertical red line shows the mean, which is 165.36

Model Selection: Post picking the best subset of features to estimate water consumption, we tried
numerous machine learning models. The main challenge was the lack of data (total 172 points),
which had two consequences: first, it disabled us from using large deep learning models that are data
hungry. Second, it forced us to focus on a search space of "simple" (classical ML) models with low
variance (better generalization), even at the expense of high bias (error). We split the data into train
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(80%) and test (20%). We trained the various models on the train data and evaluated it on the test
data using k cross validation where k = 10. Since we dealt with so little data, we wanted to control
for the case that a random selection of cities for the train and test split does affect the performance
(i.e. it may be the chance that a specific random split generated great performance while a different
random one did not). To control for that, we evaluated each model on 10 different data splits (i.e.
changing the seed number). The results are presented in table[5] We used a baseline model for each
model we tested.

Table 5: Model Performance evaluated on a test set. The scores are the average of the metric on 10
different random test sets, and each evaluation on one test set was done via 10-cross validation

Model Benchmark Water

Model/Metric MAPE R? Ratio Score
Linear Regression 26.5% 0.257 38%
Ridge regression 26.5% 0.255 38%
K Nearest Neighbors 20.3% 0.409 27.8%
Support Vector Machines (linear) 25.8% 0.259 43.6%
Support Vector Machines (polynomial) || 58% 0.26 35.4%
Support Vector Machines (radial) 19.4% 0.497 25.7%
Decision Trees 28.4% 0.133 25.7%
Random Forest 15.3% 0.589 19.7 %
Extremely Randomized Trees 13.6% 0.625 20.3%
Extreme Gradient Boosting 14.8% 0.542 21.9%
Multi-layered Perceptron 30.8% 0.274 37.1%

Chosen Model: Extremely Randomized Trees (ERT): Unlike random forests, ERT’s use the
same training set for training all trees and split a node based on both variable index and variable
splitting value, while random forests only splits by variable value. This makes ERTs both more
computationally efficient and generalizable than random forests - which is crucial in our setting since
we predict 9,000 values using solely 172 data points.

A4 Food

Data: To estimate the food consumption for the 9000 cities, we used Euronmonitor International
data [23]]. It has information on 1220 cities worldwide, which seemed to be an adequate sample to
investigate. The information is available for many years, for consistency sake, we used values for
2015.

Feature Selection and Prepossessing: We relied heavily on the literature to identify which factors
influence food behaviors. Some studies [33]][34] revealed that economic, social, and physical factors
are the major determinant of food consumption for individuals. Another study also pointed out the
location and temperature affects people’s appetite. [35]. Thus, we tried looking for data that include
information on these variables at Euromonitor and Global Economy [36]]. Some elements on the
list included: housing expenditure, communication expenditure, health-related expenditure, average
household number, birth rate, inflation, and growth rate. The feature selection method for food was
similar to energy and food: we checked the statistical significance of the the variables we had in our
dataset and looked for highest performing set of variables. Additionally, we picked the subset of
features that can be applied to the 9000 cities.

Model Selection: Since the food model was developed simultaneously with the water model, we
first attempted to take similar regression and proportion strategies. We tried regression models and
proportion models based on our energy estimations and city light as described in the energy section [A]
The regression model results were relatively satisfying. However, we wanted a more robust approach
to food. We relied heavily on refining our definition of food consumption. Do we think of it as the
expenditure on food and/or food supplies? Intake of protein? Intake of fats? Intake of calories? We
decided to define food consumption as the average daily consumption of calories.
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Chosen Model: Population Proportion per capita We constructed several models using data from
the Global Economy [36] employing each definition of food consumption, and the best one that had
the highest R-squared, lowest MAPE, and lowest score in ratio test was the population proportion
model of average intake of calories as shown in these results presented in tables|[6] [7] The scores are
the average of the metric on 10 different random test sets, and each evaluation on one test set was

done via 10-cross validation

Table 6: Model Performance evaluated on a test set for food consumption per capita

Model Benchmark Food per Capita

Model/Metric MAPE R? Ratio Score
Linear Regression with population 44.1% 0.06 63.8%
Linear Regression with population and land 44% 0.062 61.6%
Population Proportion Model 26.5% 0.681 31%

Linear Regression Population Proportion Model || 22.5% 0.711 30.2%

Table 7: Model Performance evaluated on a test set for food consumption per city

Model Benchmark Food City-Level

Model/Metric MAPE R? Ratio Score
Linear Regression with population 51.3% 0.55 131.9%
Linear Regression with population and land 79% 0.67 138.5%
Population Proportion Model 26.5% 0.95 31%
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Appendix B Evaluation Criteria for the novel Resource Dataset

The predictions of energy, water, and food consumption of 9000 cities enabled constructing a novel
data set that entails resource consumption of cities on a global scale. Since this data is new, we
wanted to benchmark it through three different approaches: standard regression metrics (MAPE and
R? on the out of sample set), statistical characteristics (comparing mean, median, range, variance
between the original data and the predicted data), and a Ratio Score metric[T|which we have developed
specifically for this task.

Out of these three evaluation metrics, standard regression metrics and Ratio Score are presented in
table

B.1 Standard Regression Metrics

We evaluate our model across all counties in the test year with data. We use two standard regression
metrics: MAPE and R?.

MAPE (Mean Absolute Percentage Error) is commonly used as a loss function for regression problems
and in model evaluation, and it has a very intuitive interpretation in terms of relative error, which is
why we chose it over other similar metrics such as RMSE and MAE which are less intuitive. It is the
sum of the individual absolute errors divided by the true values:

1 .
i€T Yi
Where N is total number for cities in the test set 7, y; is the true value for city 7 and p; is the predicted
value for city 1.

R? is a measure of how much the variation in the data can be explained by the model predictions.
Formally,

ZigT(yi - pi)2
>ieT(Wi —9)?

where 7 is the average value across the entire test set 7. The top of the fraction corresponds to the
sum of the squared residuals (RSS: difference between true yield and model prediction). The bottom
is the total sum of squares (TSS: the difference between the true value and the average value across
the test set), which is proportional to the overall variance of the test set.

RP=1-

B.2 Statistical Characteristics Benchmark

The statistical characteristics of the original data we possessed and our novel data is presented in
table E} We observe that the mean and median are similar, but the range and standard deviation is
wider in the original dataset. We believe this happens because the models were trained on very few
data points, while making predictions for a many more data points. This motivates the importance of
picking the right predictive model based on how well it generalizes on the out of sample data set.

B.3 Ratio Score Metric

The Ratio Score metric we have developed was created to depict how well each predictive model
captures the ratio between resource consumption of cities. Table[0]shows an example that was made
to show the Ratio Score between two cities for reference. When we used Ratio Score to evaluate our
models, we used the average Ratio Score on the out of sample dataset. We define a good Ratio Score
to be below 30%. Ratio Score metric is presented in algorithm[I] In words, the Ratio Score Metric
for city ¢ calculates the true and predicted ratio between city ¢ in the test set and all the other cities
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Table 8: Data set benchmark via statistical characteristics.

Data Set Benchmark
Measurement/Dataset Original Data Our Novel Predicted Data
Mean (Energy) 3014.533 3075.545
Mean (Water) 165.36 166.08
Mean (Food) 10406618 11267953
Median (Energy) 1582.5 2328.9
Median (Water) 148 160.91
Median (Food) 9011173 9954047
Min (Energy) 158 197.5
Min (Water) 71 96.47
Min (Food) 2758824 4198104
Max (Energy) 26790 23657.35
Max (Water) 538.0 326.57
Max (Food) 34192000 29303875
sd (Energy) 3642.505 3294.618
sd (Water) 71.27 31.18
sd (Food) 5621284 4723401

(numbered 1...IV, if the test set includes [V cities) in that set except for city ¢. Then, it calculates the

MAPE between the true and the predicted Ratio Scores, and averages through all cities.

Table 9: Ratio Score for water consumption between two cities. The MAPE is calculated by

W, for example “71717;81892' = 10.48%. Ratio is calculated by dividing the values
between cities, for example, true ratio here is % =0.78
Data Set Benchmark
City/Value True Value Predicted MAPE True Ratio || Predicted Ratio
Value
Geneva (Switzerland) || 171 188.92 10.48% 0.78 0.77
Tokyo (Japan) 220 244.93 11.33% ) )

Algorithm 1: Ratio Score

T ={y1,...yn}: true testing data
P = {y1,...yn }: predictions on testing data
‘R = 0: Ratio Score
Initialize R, ,.: a vector of length N — 1
Initialize R}, . ;crion: @ vector of length N — 1
for city name i € T do

for city name j € T,j # i do

Compute R},,. = (£)Vj € T,j #

Compute R? =(BovVvjeP,j+#i

prediction P;

end
IR} R

true

Compute R.,.,.,, = Ri—mdlcfcd‘
true

Update R =R + R%,.,..
end
Return R

B.4 Limitations:

Each model has its limitations based on the dataset available. The energy model doesn’t accurately
represent super-mega cities like Texas, NY, and LA since the light radiance doesn’t go beyond a
specific point. That is, a city will use more energy, but it is bright enough that more consumption
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doesn’t get captured in the satellite images. For water, since we worked with very few data points
(172 total, 138 used for training), we need to make sure the distribution of cities is generalizable
enough; namely, it represents a comprehensive set of countries and cities to match (or at least be
close to) the 9000 cities we used to predict. This, unfortunately, is not under our control since water
consumption data is very scarce. Regarding food, the consumption of calories doesn’t capture the
individual variations of the type of consumed food, i.e. healthy or junk. We assume that the only
variation in the city consumption is their population and the food sources available.
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Appendix C Clustering

We experimented other standard clustering techniques such as: K-Means algorithm (KM) [37] and
Gaussian Mixture Models (EM) [38]] and compared the results of the combination with the Outlier
Detection (OD) and Variational Autoencoders (VAE) and reported the results, seen in table[I0] As
seen in the paper, our proposed three-fold clustering of (1) outlier detection (2) VAE (3) agglomerative

clustering performs best, both in terms of CHI and SC. Figure[d]shows the spatial distribution for 1100

cities identified in the outliers group over five clusters. It can be noted that the outliers group mostly
included major cities in the developed North, parts of the United States, West-Northern Europe, and

major cities in Asia.

Table 10: Silhouette Coefficient outputs and Calinski-Harabasz Index for the tested methods

| Calinski-Harabasz Index

| Silhouette Coefficient

Algorithm/Method || with VAE Direct Clustering || with VAE Direct Clustering
K Means 39851.71 5031.95 0.315 0.368
Agglomerative 42495.66 4345.80 0.466 0.452
Gaussian Mixture || 8190.34 1312.97 0.206 0.0252
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Figure 4: Spatial distribution of the outliers group
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Figure 5: Spider plots for the five main clusters in the outliers group
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Figure 6: t-SNE using AC
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Figure 7: t-SNE using OD+VAE+AC

In addition, we provided t-SNE [39] plots to visually analyze the performance of the clustering
algorithms we tested. t-SNE is a visualizing algorithm that visualizes multi-dimensional data by
projecting them to a 2D space. This is the 2D representation of the t-SNE algorithm. As shown
in figures 7] [6] and aligned with our quantitative metrics (Calinski-Harabasz Index and Silhouette
Coefficien), VAE clustering has much clearer, and more separable clusters, suggesting it performs
better than an alternative, baseline clustering approach.
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