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Abstract

This paper develops a novel data set for three key resources use; namely, food,1

water, and energy, for 9000 cities globally. The data set is then utilized to develop2

a clustering approach as a starting point towards a global classification model.3

This novel clustering approach aims to contribute to developing an inclusive view4

of resource efficiency for all urban centers globally. The proposed clustering5

algorithm is comprised of three steps: first, outlier detection to address specific city6

characteristics, then a Variational Autoencoder (VAE), and finally, Agglomerative7

Clustering (AC) to improve the classification results. Our results show that this8

approach is more robust and yields better results in creating delimited clusters with9

high Calinski-Harabasz Index scores and Silhouette Coefficient than other baseline10

clustering methods.11

1 Introduction12

Cities are both the drivers of climate change and the major component of the solution. Yet, many13

cities are lacking direction toward a climate-positive and sustainable future. The latest IPCC report14

has underlined the role of international climate networks between urban centers [1], [2] such as city15

networks. The main limitation to achieving efficient city networks is that many cities are relatively16

small and lack the resources to know what solution set is most appropriate for them and how to17

connect to other cities to share their stories and journey toward sustainability. This is problematic18

as smaller cities face different barriers from their global counterparts [3], and these cities are likely19

to define urbanization’s future, especially in the Global South [4]. This paper directly addresses20

this dichotomy by using machine learning to develop a global classification approach for cities21

into various profiles based on quantitative characteristics that can enhance the understanding of22

urbanization pathways.23

Related Work: Most cities’ classification studies have mostly focused on hierarchical data-driven24

methods and do not move beyond comparing a limited number of cities with territorial similarities or25

development levels [5]. To our knowledge, a clustering approach for cities worldwide has not been26

fully explored in the literature to date. Such global classification has been challenging due to the lack27

of available data on a global scale. Thus, this paper develops a novel data set and a broad definition28

of city boundaries to develop a clustering approach for 9000 cities worldwide. The work presented in29

this paper is divided into two key components. First, the development of global prediction models for30

resource use (energy, water, food) for 9000 cities globally to fulfill the current gap in data needs to31

achieve inclusive clustering of cities. Second, a novel clustering approach that performs better than32
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baseline clustering and identifies possible city networks that can aid in the global climate change33

discussion needs and resource efficiency opportunities.34

2 Data and Methods35

2.0.1 Data36

In this paper, we developed a machine learning approach to predict energy, water, and food consump-37

tion for a total of 9,000 cities around the world. This data - for a comprehensive 9000 cities around38

the world - simply does not exist. Thus, we collected resource data for a subset of cities around39

the world and processed each dataset to construct our predictive models. For further information40

regarding the data, methods, and evaluations, refer to appendices A, B. Figure 2 portrays our decision41

flow process with picking the best resource estimation model.42

2.0.2 Methods43

Energy Consumption Model: To generate a comprehensive energy estimation model, we used city44

light radiance as a proxy. We found that city light radiance captured in satellite images approximates45

well the energy consumption of cities, so we employed a city light radiance proportion model that46

estimates the consumption of a specific city based on the city’s light radiance percentage of the whole47

country multiplied by the country’s population proportion and total energy consumption following48

previous work in [6], [7], [8] using equation 1. Our model selection analysis is presented in appendix49
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Li corresponds to light radiance, Pi to population, Ei to energy, and Ej to National Average Energy51

consumption for country j that includes city i.52

Water Consumption Model: To remedy the lack of observational data for water consumption, we53

limited our model search space to models that work well with little data. Inspired by Fan et al. [9], we54

performed feature selection to pick a subset of features that first, accurately depict water consumption,55

second, are generalizable enough to be used for 9,000 cities. For example, the number of washing56

machines per household was used in [9], but could not be used for 9,000 cities simply because it is57

unavailable for this large set of cities. The model that was picked to estimate water consumption was58

Extremely Randomized Trees (ERT) [10], which is similar to other tree based ensemble algorithms59

such as random forests, but was found to perform and generalize better. The ERT model incorporated60

total population, land area (from [11]), precipitation (from [12]), temperature (from [13]), and water61

price (from [14]) which corresponded to our two aforementioned conditions. For further information62

refer to appendix A.3.63

Food Consumption Model: Findings from the literature indicated that the city’s food consumption64

is highly correlated with population. These findings prompted us to develop a population proportion65

model to estimate food consumption following the same approach in [8]. We define food consumption66

as the average daily consumption of calories. The population proportion output is then used to67

estimate food consumption via linear regression as seen in equation 2. For further information, refer68

to appendix A.4.69

F
capita/city
i = β̂0 + β̂1(

P city
i

P country
j

× F country
j ) + ϵi (2)

Pi and Fi correspond to population and food consumption, respectively. β’s are regression coefficients70

and ϵi is the error for city i. Fj and Pj correspond to food consumption and population for country j71

that includes city i72
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2.0.3 Initial Results and Evaluation73

The predictions of our models correspond to an estimation of energy, water, and food consumption74

across 9,000 cities around the world. These predictions form a novel dataset that leverages the power75

of machine learning research. To quantify the performance of each model (i.e. our new dataset),76

we used three benchmarks: standard regression metrics (MAPE and R2 on the out of sample set),77

statistical characteristics (e.g. comparing mean, median, etc. between the original data and the78

predicted data), and a Ratio Score metric B.3 which we have developed specifically for this task.79

Table 1 presents the results for MAPE, R2, and Ratio Score benchmarks used to compare the ground80

truth dataset and the predicted set, evaluated on the test set. Our comprehensive benchmark on the81

new dataset and models’ performance is described in appendix B. We discuss he limitations of our82

predictions in B.4.83

Table 1: Evaluation of the predicted dataset on the out of sample test set

Dataset/Predictions Benchmark
Resource/Metric MAPE R2 Ratio Score
Energy 67.7% 0.77 89.5%
Water 13% 0.63 20.3%
Food 22.5% 0.71 30.2%

2.0.4 Clustering84

The second step is to use outputs from the resource use prediction models to develop the global85

classification. Here, we developed the clustering approach over three key components: 1) outlier86

detection (OD), 2) encoding with Variational AutoEncoders (VAE) [15], and 3) agglomerative87

clustering [16]. The intuition behind using an outlier detector is that some variables like population88

and area obey Zipf’s Law [17], where there is an exponential increase in the values of the variables89

for major cities per country. Therefore, through the outlier detector, we exclude the highest x%90

(x is determined empirically) of the data in the attributes of interest. This step has allowed us to91

separate the data into an outlier and a non-outlier group based on the attributes we want. Next, we92

apply a VAE based transformation [15] before applying the clustering algorithm. Training a VAE93

as a pre-processing step makes it possible to perform a non-linear transformation that encodes the94

data into a finer, more separated, and denoised representation. We train the VAE until convergence95

to reconstruct the input data using KL-Divergence and Mean Square error objectives, then use the96

encoder part to transform the data (to the VAE latent space). We use the Adam optimizer [18] with a97

learning rate of 0.001 for training. For the clustering algorithm, we try the standard AC and other98

standard clustering methods, which are included in appendix C.99

3 Initial Clustering Results100

To assess the performance of the proposed approach, clusters are evaluated using the Calinski-101

Harabasz Index (CHI) [19] and the Silhouette Coefficient (SC) [20]. These are standard ways of102

evaluating clustering as they measure how dispersed/close the points in the clusters are to each other.103

CHI is unbounded while SC ranges from -1 to 1. Scores for our method with VAE, and without VAE104

(namely "Direct Clustering") are shown in Table 2.105

Table 2: Evaluation of different combination of clustering. The higher score the better.

Clustering Algorithm Performance
Metric/Algorithm AC only OD+AC OD+VAE+AC
Calinski-Harabasz Index 4345.80 2546.07 42495.66
Silhouette Coefficient 0.45 0.17 0.47

As the table demonstrates the results of the approaches, the VAE + OD + AC (extracting outliers,106

passing them to VAE and clustering them) produced the highest score for CHI (∼9.7 times more than107
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just using AC). Thus, our analysis suggests that our novel, three fold clustering method performs108

better classification on our novel dataset than baseline clustering. For visualization and interpretability,109

we use spider plots to visualize the per-cluster mean of the attributes. This makes it easier to interpret110

the attributes that the clusters were divided based on. Figure 1 shows three example clusters in the111

outlier group. For instance, cluster two includes cities at the top 500 range in food consumption112

and medium range in water use, like Oklahoma (US), Nashville (US), Columbus (US), Buenos113

Aires (ARG), and London (UK). Many cities of this cluster are already working together to address114

climate change under the C40. Each city has drafted plans according to their needs; however, why115

couldn’t they write plans together when they have similar needs? This is one way our proposed global116

clustering approach can help cities address their climate challenges.117

Figure 1: Spider plots for the three example clusters in the outliers group

4 Conclusion118

The proposed global clustering approach for cities using ML techniques has two practical implications.119

First, it will provide space for a comprehensive assessment of cities globally and help identify the120

aggregate contribution of urban areas to global climate challenges. Second, global clustering of cities121

will allow the comparison between cities with similar features and derive pathways for sustainable122

urban growth, resource efficiency, and climate change challenges. The data presented in this paper123

are novel and unique as they are fulfilling gaps in data scarcity for the majority of cities globally that124

limits the opportunities for resource efficiency and sustainable urban growth. This assessment for125

resource use in all cities globally has not been done before, and we believe it will pave the way for a126

better understanding of opportunities for resource efficiency globally and aid better policy design.127

The goal for future work is the investigation and identification of ‘track shifting’ mechanisms and128

policy interventions that could facilitate urban sustainability.129
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Appendix A Data and Model Selection213

A.1 Data214

In this paper, we developed a machine learning approach to predict energy, water, and food consump-215

tion for a total of 9,000 cities around the world. That resulted in three models, each specialized in216

predicting one resource component using particular sets of features. We adopted a novel approach217

that relied on different data sources like city night light radiance from satellite images, population,218

land area, and others, and we used these variables as a proxy to estimate energy, water, and food219

consumption models. For each model, we experimented and expanded on similar work that was done220

before in literature, such as choosing variables, using ML models and proportion (non ML) models,221

and evaluated them using the benchmarks we designed.222

Figure 2: Model & feature selection decision flow

Previous energy, food, and water consumption data per city - for a comprehensive 9000 cities around223

the world - simply does not exist. Thus, we collected resource data for a subset of cities around the224

world and processed each dataset to construct our predictive models. We used [21] to obtain energy225

use values for 155 cities, and [22] to obtain water use for 172 cities. For food, we used [23]. Since226

the data and context varied greatly between the three resources, we treated each case separately and227

designed our predictive models accordingly.228

A.2 Energy229

Data: Countries report their energy consumption values each year [24]. However, little information230

is reported on the city-level, especially for the units outside the OECD region. We used a random231

sample of 157 cities [21] that included the average electricity use per capita in kWh for the year of232

2012.233

Feature Selection and Prepossessing: There are many variables that intuitively correlate with234

energy consumption such as the available income resources and the location of the city. Horta and235

Keirstea [8] attempted downscaling the energy consumption from the country to city-level before,236

but they performed their analysis on London and near-London cities only. Yet, they mentioned237

several approaches to tackle this challenge such as fitting population-proportion or regression models.238

We gathered information based on the literature of what affects the energy consumption, and we239

found out that population, GDP per capita, green house gas emissions, and temperature, [25] were240

the biggest four indicators of energy consumption [6], [7]. Therefore, we tried to gather as much241

information on these variables as possible in one universal dataset to perform our analysis. The list of242

the final variables included: population, population density, area, percentage of area covered by water,243

percentage of area covered by land, average temperature, city-light radiance, and some vegetation244

indices. Our methodology was to look for variables that are available for the 9000 cities, so we can245

generalize our findings.246

The selection criteria for these variables are based on the following steps247

1. Try different statistical feature selection methods (namely, forward selection, backward248

selection, and best subset), manually look for features that are consistently top performing249

across different those feature selection ways, pick them as our best subset.250

2. Out of this best subset of features, pick those who can be used for 9000 cities (i.e. if we251

have a value for each city in our city list of 9000 cities).252
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Model Selection: Inspired by the work done in [8], we replicated the proposed methods; namely253

a linear regression with population model, and a multivariate regression with population and area.254

We benchmarked them with a proportion model we designed using city-light radiance based on a255

previous study by Letu et al[26]. We created that model by estimating the proportion of the city light256

radiance of the city to its entire country then multiplied by the total consumption for the country. This257

method estimated energy consumption values for an entire city. Moreover, we wanted to replicate258

this approach on the capita-level to see if our assumptions hold.259

Chosen Model: City-Light Proportion per capita As tables 3, 4 suggest, the city-light proportion260

model performed better than the regression ones on the city-scale and the capita-scale across all our261

statistical metrics presented in B.1. Tables 3, 4 portray our results. The scores are the average of the262

metric on 10 different random test sets, and each evaluation on one test set was done via 10-cross263

validation264

Table 3: Model Performance evaluated on a test set on energy consumption per capita

Model Benchmark Energy per Capita
Model/Metric MAPE R2 Ratio Score
Linear Regression with city light and land 193.8% 0.07 234%
Linear Regression with population and land 212% 0.05 264.8%
Population Proportion Model 67.7% 0.77 89.5%

Table 4: Model Performance evaluated on a test set on energy consumption per city

Model Benchmark Energy City-Level
Model/Metric MAPE R2 Ratio Score
Linear Regression with city light and land 58.9% 0.73 89.7%
Linear Regression with land and population 99.9% 0.03 634.5%
Population Proportion Model 67.7% 0.52 89.5%

A note on the results: While the results we obtained for energy consumption are not relative high265

(compared to food and water), they are consistent. Our proportion model suggests a linear correlation266

between our estimation and the ground truth value, albeit a relatively high error rate (MAPE, ratio267

score). The main challenge was energy consumption was the very little data points we had (157 data268

points), which restricted our use of more advanced ML.269

A.3 Water270

Data: Since water consumption data per city for a broad range such as 9000 is not available, we used271

Urban Household Water Consumption Data [22], which provided water consumption data (liters per272

capita per day) for years 2014 and 2015. The data corresponded to 289 data points, of which 119273

were for 2014 and 170 for 2016. Out of all 289 data points, there were 172 unique cities.274

Feature Selection and Prepossessing: Previous studies have suggested various drivers of water275

consumption. Domestic water use is highly complex and diverse because it can be affected by many276

factors. For example, one view is that water consumption is highly affected by population: with277

increasing city population, global water consumption in cities has increased by approximately six-fold,278

which was twice the rate of population growth [27]. Other views are climate and meteorology [28],279

socio-demographic profiles [29], household characteristics [30], water availability and conservation280

[31], and pricing and policies [32]. To determine the right subset of features for our water consumption281

model, we generated a comprehensive dataset by combining the water consumption data we had282

with the Euromonitor data [23], which provided us with 62 different features, which span across283

domains such as socioeconomic, meteorological factors, water supply, etc. The water consumption284

data we used and Euromonitor data did not align perfectly (i.e. some cities were in one dataset but285

not the other, and vice versa), thus we had to eliminate cities with no information. The finalized286

dataset included 172 datapoints across 62 features. To our understanding, using proportion models to287
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estimate water consumption was not supported in the literature review, thus we focused on machine288

learning models.289

Our feature selection process included two steps:290

1. Try different statistical feature selection methods (e.g. Recursive Feature Elimination with291

random forest regressor), manually look for features that are consistently top performing292

across different those feature selection ways, pick them as our best subset.293

2. Out of this best subset of features, pick those who can be used for 9000 cities (i.e. if we294

have a value for each city in our city list of 9000 cities)295

Our methodology is summarized as following: after trying different types of feature selection296

processes (namely, wrapper: Recursive Feature Elimination with different types of estimators,297

embedded: lasso regression) we picked a subset that consisted of precipitation, GDP per capita, death298

rate, land area, population growth, water price, temperature, birth rates, Consumer Price Index, total299

population.300

Among those, we selected only those which we have information for 9000 cities. For example, death301

rates was consistently found to be a strong predictor for water consumption, but many cities around302

the world do not provide that data. Our finalized subset of features included precipitation (2015),303

land temperature (two meters above the ground, for 2015), land area (2015), total population (2015),304

and water price (in retail stores, a value that was similar between cities within the same country).305

This dataset was normalized, since city values, naturally, have a wide range. Outliers in these306

scenarios are meaningful and thus were not excluded. The water consumption distribution was right307

skewed as shown in figure 3, thus the models were evaluated on a log scale of the water consumption.308

Figure 3: Water Consumption Distribution. The vertical red line shows the mean, which is 165.36

Model Selection: Post picking the best subset of features to estimate water consumption, we tried309

numerous machine learning models. The main challenge was the lack of data (total 172 points),310

which had two consequences: first, it disabled us from using large deep learning models that are data311

hungry. Second, it forced us to focus on a search space of "simple" (classical ML) models with low312

variance (better generalization), even at the expense of high bias (error). We split the data into train313

9



(80%) and test (20%). We trained the various models on the train data and evaluated it on the test314

data using k cross validation where k = 10. Since we dealt with so little data, we wanted to control315

for the case that a random selection of cities for the train and test split does affect the performance316

(i.e. it may be the chance that a specific random split generated great performance while a different317

random one did not). To control for that, we evaluated each model on 10 different data splits (i.e.318

changing the seed number). The results are presented in table 5. We used a baseline model for each319

model we tested.320

Table 5: Model Performance evaluated on a test set. The scores are the average of the metric on 10
different random test sets, and each evaluation on one test set was done via 10-cross validation

Model Benchmark Water
Model/Metric MAPE R2 Ratio Score
Linear Regression 26.5% 0.257 38%
Ridge regression 26.5% 0.255 38%
K Nearest Neighbors 20.3% 0.409 27.8%
Support Vector Machines (linear) 25.8% 0.259 43.6%
Support Vector Machines (polynomial) 58% 0.26 35.4%
Support Vector Machines (radial) 19.4% 0.497 25.7%
Decision Trees 28.4% 0.133 25.7%
Random Forest 15.3% 0.589 19.7%
Extremely Randomized Trees 13.6% 0.625 20.3%
Extreme Gradient Boosting 14.8% 0.542 21.9%
Multi-layered Perceptron 30.8% 0.274 37.1%

Chosen Model: Extremely Randomized Trees (ERT): Unlike random forests, ERT’s use the321

same training set for training all trees and split a node based on both variable index and variable322

splitting value, while random forests only splits by variable value. This makes ERTs both more323

computationally efficient and generalizable than random forests - which is crucial in our setting since324

we predict 9,000 values using solely 172 data points.325

A.4 Food326

Data: To estimate the food consumption for the 9000 cities, we used Euronmonitor International327

data [23]. It has information on 1220 cities worldwide, which seemed to be an adequate sample to328

investigate. The information is available for many years, for consistency sake, we used values for329

2015.330

Feature Selection and Prepossessing: We relied heavily on the literature to identify which factors331

influence food behaviors. Some studies [33][34] revealed that economic, social, and physical factors332

are the major determinant of food consumption for individuals. Another study also pointed out the333

location and temperature affects people’s appetite. [35]. Thus, we tried looking for data that include334

information on these variables at Euromonitor and Global Economy [36]. Some elements on the335

list included: housing expenditure, communication expenditure, health-related expenditure, average336

household number, birth rate, inflation, and growth rate. The feature selection method for food was337

similar to energy and food: we checked the statistical significance of the the variables we had in our338

dataset and looked for highest performing set of variables. Additionally, we picked the subset of339

features that can be applied to the 9000 cities.340

Model Selection: Since the food model was developed simultaneously with the water model, we341

first attempted to take similar regression and proportion strategies. We tried regression models and342

proportion models based on our energy estimations and city light as described in the energy section A.343

The regression model results were relatively satisfying. However, we wanted a more robust approach344

to food. We relied heavily on refining our definition of food consumption. Do we think of it as the345

expenditure on food and/or food supplies? Intake of protein? Intake of fats? Intake of calories? We346

decided to define food consumption as the average daily consumption of calories.347
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Chosen Model: Population Proportion per capita We constructed several models using data from348

the Global Economy [36] employing each definition of food consumption, and the best one that had349

the highest R-squared, lowest MAPE, and lowest score in ratio test was the population proportion350

model of average intake of calories as shown in these results presented in tables 6, 7. The scores are351

the average of the metric on 10 different random test sets, and each evaluation on one test set was352

done via 10-cross validation353

Table 6: Model Performance evaluated on a test set for food consumption per capita

Model Benchmark Food per Capita
Model/Metric MAPE R2 Ratio Score
Linear Regression with population 44.1% 0.06 63.8%
Linear Regression with population and land 44% 0.062 61.6%
Population Proportion Model 26.5% 0.681 31%
Linear Regression Population Proportion Model 22.5% 0.711 30.2%

Table 7: Model Performance evaluated on a test set for food consumption per city

Model Benchmark Food City-Level
Model/Metric MAPE R2 Ratio Score
Linear Regression with population 51.3% 0.55 131.9%
Linear Regression with population and land 79% 0.67 138.5%
Population Proportion Model 26.5% 0.95 31%

11



Appendix B Evaluation Criteria for the novel Resource Dataset354

The predictions of energy, water, and food consumption of 9000 cities enabled constructing a novel355

data set that entails resource consumption of cities on a global scale. Since this data is new, we356

wanted to benchmark it through three different approaches: standard regression metrics (MAPE and357

R2 on the out of sample set), statistical characteristics (comparing mean, median, range, variance358

between the original data and the predicted data), and a Ratio Score metric 1 which we have developed359

specifically for this task.360

Out of these three evaluation metrics, standard regression metrics and Ratio Score are presented in361

table 1.362

B.1 Standard Regression Metrics363

We evaluate our model across all counties in the test year with data. We use two standard regression364

metrics: MAPE and R2.365

MAPE (Mean Absolute Percentage Error) is commonly used as a loss function for regression problems366

and in model evaluation, and it has a very intuitive interpretation in terms of relative error, which is367

why we chose it over other similar metrics such as RMSE and MAE which are less intuitive. It is the368

sum of the individual absolute errors divided by the true values:369

MAPE =
1

N

∑
i∈T

|yi − pi|
yi

Where N is total number for cities in the test set T , yi is the true value for city i and pi is the predicted370

value for city i.371

R2 is a measure of how much the variation in the data can be explained by the model predictions.372

Formally,373

R2 = 1−
∑

i∈T (yi − pi)
2∑

i∈T (yi − y)2

where y is the average value across the entire test set T . The top of the fraction corresponds to the374

sum of the squared residuals (RSS: difference between true yield and model prediction). The bottom375

is the total sum of squares (TSS: the difference between the true value and the average value across376

the test set), which is proportional to the overall variance of the test set.377

B.2 Statistical Characteristics Benchmark378

The statistical characteristics of the original data we possessed and our novel data is presented in379

table 8. We observe that the mean and median are similar, but the range and standard deviation is380

wider in the original dataset. We believe this happens because the models were trained on very few381

data points, while making predictions for a many more data points. This motivates the importance of382

picking the right predictive model based on how well it generalizes on the out of sample data set.383

B.3 Ratio Score Metric384

The Ratio Score metric we have developed was created to depict how well each predictive model385

captures the ratio between resource consumption of cities. Table 9 shows an example that was made386

to show the Ratio Score between two cities for reference. When we used Ratio Score to evaluate our387

models, we used the average Ratio Score on the out of sample dataset. We define a good Ratio Score388

to be below 30%. Ratio Score metric is presented in algorithm 1. In words, the Ratio Score Metric389

for city i calculates the true and predicted ratio between city i in the test set and all the other cities390
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Table 8: Data set benchmark via statistical characteristics.

Data Set Benchmark
Measurement/Dataset Original Data Our Novel Predicted Data
Mean (Energy) 3014.533 3075.545
Mean (Water) 165.36 166.08
Mean (Food) 10406618 11267953
Median (Energy) 1582.5 2328.9
Median (Water) 148 160.91
Median (Food) 9011173 9954047
Min (Energy) 158 197.5
Min (Water) 71 96.47
Min (Food) 2758824 4198104
Max (Energy) 26790 23657.35
Max (Water) 538.0 326.57
Max (Food) 34192000 29303875
sd (Energy) 3642.505 3294.618
sd (Water) 71.27 31.18
sd (Food) 5621284 4723401

(numbered 1...N , if the test set includes N cities) in that set except for city i. Then, it calculates the391

MAPE between the true and the predicted Ratio Scores, and averages through all cities.392

Table 9: Ratio Score for water consumption between two cities. The MAPE is calculated by
|true−predicted|

true , for example |171−188.92|
171 = 10.48%. Ratio is calculated by dividing the values

between cities, for example, true ratio here is 171
220 = 0.78

Data Set Benchmark
City/Value True Value Predicted

Value
MAPE True Ratio Predicted Ratio

Geneva (Switzerland) 171 188.92 10.48% 0.78 0.77Tokyo (Japan) 220 244.93 11.33%

Algorithm 1: Ratio Score
1 T = {y1, ...yN}: true testing data
2 P = {y1, ...yN}: predictions on testing data
3 R = 0: Ratio Score
4 Initialize Ri

true: a vector of length N − 1

5 Initialize Ri
prediction: a vector of length N − 1

6 for city name i ∈ T do
7 for city name j ∈ T , j ̸= i do
8 Compute Ri

true = ( Ti

Tj
) ∀j ∈ T , j ̸= i

9 Compute Ri
prediction = (Pi

Pj
) ∀j ∈ P, j ̸= i

10 end

11 Compute Ri
error =

|Ri
true−Ri

predicted|
Ri

true

12 Update R = R+Ri
error

13 end
14 Return R

B.4 Limitations:393

Each model has its limitations based on the dataset available. The energy model doesn’t accurately394

represent super-mega cities like Texas, NY, and LA since the light radiance doesn’t go beyond a395

specific point. That is, a city will use more energy, but it is bright enough that more consumption396
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doesn’t get captured in the satellite images. For water, since we worked with very few data points397

(172 total, 138 used for training), we need to make sure the distribution of cities is generalizable398

enough; namely, it represents a comprehensive set of countries and cities to match (or at least be399

close to) the 9000 cities we used to predict. This, unfortunately, is not under our control since water400

consumption data is very scarce. Regarding food, the consumption of calories doesn’t capture the401

individual variations of the type of consumed food, i.e. healthy or junk. We assume that the only402

variation in the city consumption is their population and the food sources available.403
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Appendix C Clustering404

We experimented other standard clustering techniques such as: K-Means algorithm (KM) [37] and405

Gaussian Mixture Models (EM) [38] and compared the results of the combination with the Outlier406

Detection (OD) and Variational Autoencoders (VAE) and reported the results, seen in table 10. As407

seen in the paper, our proposed three-fold clustering of (1) outlier detection (2) VAE (3) agglomerative408

clustering performs best, both in terms of CHI and SC. Figure 4 shows the spatial distribution for 1100409

cities identified in the outliers group over five clusters. It can be noted that the outliers group mostly410

included major cities in the developed North, parts of the United States, West-Northern Europe, and411

major cities in Asia.412

Table 10: Silhouette Coefficient outputs and Calinski-Harabasz Index for the tested methods

Calinski-Harabasz Index Silhouette Coefficient
Algorithm/Method with VAE Direct Clustering with VAE Direct Clustering
K Means 39851.71 5031.95 0.315 0.368
Agglomerative 42495.66 4345.80 0.466 0.452
Gaussian Mixture 8190.34 1312.97 0.206 0.0252

Figure 4: Spatial distribution of the outliers group

Figure 5: Spider plots for the five main clusters in the outliers group
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Figure 6: t-SNE using AC

Figure 7: t-SNE using OD+VAE+AC

In addition, we provided t-SNE [39] plots to visually analyze the performance of the clustering413

algorithms we tested. t-SNE is a visualizing algorithm that visualizes multi-dimensional data by414

projecting them to a 2D space. This is the 2D representation of the t-SNE algorithm. As shown415

in figures 7, 6 and aligned with our quantitative metrics (Calinski-Harabasz Index and Silhouette416

Coefficien), VAE clustering has much clearer, and more separable clusters, suggesting it performs417

better than an alternative, baseline clustering approach.418
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