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Abstract

Precipitation drives the hydroclimate of Earth and its spatiotemporal changes on
a day to day basis have one of the most notable socioeconomic impacts. The
success of numerical weather prediction (NWP) is measured by the improvement
of forecasts for various physical fields such as temperature and pressure. Large
biases however exist in the precipitation predictions. Pure deep learning based
approaches lack the advancements acheived by NWP in the past two to three
decades. Hybrid methodology using NWP outputs as inputs to the deep learning
based refinement tool offer an attractive means taking advantage of both NWP and
state of the art deep learning algorithms. Augmenting the output from a well-known
NWP model: Coupled Forecast System ver.2 (CFSv2) with deep learning for the
first time, we demonstrate a hybrid model capability (DeepNWP) which shows
substantial skill improvements for short-range global precipitation at 1-, 2- and
3-days lead time. To achieve this hybridization, we address the sphericity of the
global data by using modified DLWP-CS architecture which transforms all the
fields to cubed-sphere projection. The dynamical model outputs corresponding
to precipitation and surface temperature are ingested to a UNET for predicting
the target ground truth precipitation. While the dynamical model CFSv2 shows

Tackling Climate Change with Machine Learning: workshop at NeurIPS 2022.



a bias in the range of +5 to +7 mm/day over land, the multivariate deep learning
model reduces it to -1 to +1 mm/day over global land areas. We validate the
results by taking examples from Hurricane Katrina in 2005, Hurricane Ivan in 2004,
Central European floods in 2010, China floods in 2010, India floods in 2005 and
the Myanmar cyclone Nargis in 2008.

1 Introduction

Precipitation forms an essential component of the hydrological cycle for the planet. The precipitation
falling on land and oceans provides sustenance to the living beings and its accurate predictions
can lead to tremendous societal benefits. At short-range time scales, i.e. of the order one to three
days, the information of rain occurrence is helpful for various stakeholders. For example, ahead
in time knowledge of precipitation can help better mitigate or manage the impacts of hurricanes,
cyclones and floods. At present, most of the weather forecasting in the world is performed by the
models which are known as dynamical models or numerical weather prediction (NWP) models (2)).
Past few decades have seen improvement in the skill of numerical weather predictions, particularly
that of temperature and winds. However, when it comes to physical fields such as precipitation
and soil moisture, there are large biases in the outputs of these models (27). Deep learning can be
effectively used as a tool to correct the biases in NWP models (22)). The ability of deep learning
to unwrap nonlinear patterns in the data coupled with its success in the spatial tasks within the
computer vision community makes it specially attractive for this task (15). There have been attempts
to perform data-driven weather forecasting by various researchers in the past (13 23)). They were
however limited by (i) performing training on linear fields relative to precipitation such as geopotential
height at 500 hPa; thus not effectively addressing the physical field of direct interest to the humans
(35 45 155 1205 1255 1265 1325 133)), (ii) their ability to address sphericity of the global data over Earth
(5 135 155 [105 [175 205 215 215 1255 265 295 1315 1365 [18), (iii) performing their study only over a limited
region; thus neglecting the global teleconnections (15135215 29; [18)), (iv) their framework not utilizing
and building upwards on the advancements in NWP; and rather trying to achieve the results similar
to NWP and not utlizing the advancements in NWP & deep learning to develop hybrid forecasting
framework to enhance the skill of the existing systems (1} 35 45 155 [175 205 [295 (325 1335 136).

1.1 Our contributions

Rather than using deep learning directly to forecast precipitation, we use a hybrid approach combining
it with the traditional NWP. In particular, we consider CFSv2 which is a model used for operational
weather prediction in the United States, India and other countries. We propose to correct its biases
by training a deep neural network that projects its outputs to ERAS reanalysis, which is a merged
product of ground and space-based observations and data-assimilation available from European
Centre for Medium-Range Weather Forecasts is used as a target. ERAS reanalysis precipitation has
shown high fidelity in representing preciptiation in the recent times (8)). Thus, we use the outputs of
precipitation and temperature from CFSv2 model and map them to the ERAS reanalysis precipitation.
The architecture of deep learning based computer vision algorithm used in modified DLWP-CS (30).

Our NWP augmented deep learning product shows substantial improvements in the representation of
precipitation. On an average, we are able to reduce the bias in precipitation from beyond +10 mm/day
to within +- 1 mm/day. The results are consistent for different lead days in the short range time
scale (+1, +2 and +3 days). When segregated based on the different seasons, the global mean bias
values show improvevement upwards of 10x by introducing deep learning in the numerical weather
prediction system. We validate our results with specific use cases comprising of heavy to extreme
precipitation from the test data. The use cases corroborate the findings from the global mean bias
and show even more substantial improvements, the maximum being for India flood 2005 wherein the
bias in NWP decreased from +17.321 mm/day to +0.003 mm/day for day 1 lead forecast when deep
learning is added to the system. Our hybrid model can be used for mitigating the impacts of various
natural disasters triggered by precipitation and effective management of water resources.
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Figure 1: Schematic of the deep learning-augmented numerical weather prediction.

2 Data and methodology

The input dataset comprises of precursors, viz, CFSv2 generated precipitation and surface air
temeprature outputs. Precipitation and temperature outputs of CFSv2 are downloaded from North
American Multi-Model Ensemble (NMME) for developing the input training dataset. ERAS reanalysis
(11) is used as the ground truth representing the real-world precipitation. We obtain the precursors
from the CFSv2 model outputs and the target extracted from ERAS reanalysis. The CFSv2 output
is available as 6-hourly average for a lead time of upto +10 months while the ERAS5 reanalysis is
available an hourly product. Daily aggregates are first generated for the input (CFSv2) and target
(ERAS5) by summing the sub-daily datasets. Then, the time slices which represent 1, 2 and 3 days
lead in CFSv2 are extracted. For the labels from ERAS, the data is extracted such that it corresponds
to the forecasted 1, 2 and 3 days from CFSv2 in reality. Data from 1982 to 2000 is used for training,
2000-2001 for validation and 2003 to 2010 for testing. The maximum and minimum values of the
training data fields are then computed for normalizing the data. Normalization scales the different
variables to the range -1 to +1. We call our model as DeepNWP to signify the hybrid nature of deep
learning augmented numerical weather prediction. The methodology used is shown as a schematic in

figure[T]
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Figure 2: Average bias in precipitation for June to August season for the deep learning augmented
NWP model (DL) and NWP model relative to ERAS reanalysis. The rows represent the bias at lead
time = 1, 2 and 3 days.

Season Lead = 1 day (mm/day) Lead =2 day (mm/day) Lead = 3 day (mm/day)
DL - ERA5 | CFSv2 - ERAS || DL - ERA5 | CFSv2 - ERAS || DL - ERAS | CFSv2 - ERAS
DJF -0.3 3.827 0.022 7.66 -0.158 7.657
MAM -0.282 3.834 0.032 7.811 -0.11 7.89
JJA -0.334 3.97 -0.02 8.102 -0.115 8.239
SON -0.299 3.954 0 7.95 -0.148 7.972

Table 1: Performance of the deep learning augmented numerical weather prediction system DeepNWP
(bold) versus CFSv2 alone. The table shows global average bias/error in simulating precipitation by
the hybrid deep learning and CFSv2 system versus CFSv2 alone. DJF (December to February), MAM
(March to May), JJA (June to August) and SON (September to November) represent the different
months of an year. The performance is shown for the entire test period from the year 2003 to 2010.

3 Results

Figure 2] shows the performance measured by average bias or error in deep learning augmented NWP
model (DL) and NWP model alone relative to ERAS reanalysis during June to August season. The
first column corresponds to DL bias and second column represents the NWP model bias. The average
bias or error is computed as a mean of the difference between the model (DL or NWP) and ERAS
reanalysis for all the samples in the test dataset. We also compute the plots similar to figure [2] for
other seasons, viz, December to February, March to May and September to November (figures not
shown). From the average seasonal bias figures, it can be noted that deep learning augmented NWP
model substantially reduces the bias in precipitation relative to the NWP (CFSv2) model. While
the mean bias over important land regions lies within the range +5 to +7 mm/day in NWP (CFSv2)
(similar to the results of (19)), it falls to within the range -1 to +1 mm/day using deep learning. Thus,
in a mean sense, deep learning augmented CFSv2 model improves the performance of precipitation
forecasts by upto 4-5x. We can note the enhanced performance until the computed +3 days lead time
for deep learning augmented NWP model. Table[T|shows the bias (model - ground truth) in global
mean precipitation at different lead times (1, 2 and 3 days). Substantially enhanced skill of global
precipitation forecasts upwards of 10x is noted for the all the seasons.



4 Conclusions

In this study, we develop a hybrid deep learning augmented numerical weather prediction (DeepNWP)
model for generating global precipitation forecasts at short-range (1, 2 and 3 days) time scales. While
previous studies have noted the possibility of a hybrid deep learning augmented NWP model and
also suggesting an end-to-end deep learning based system (28} 132), ours is a first attempt in actually
developing such a system. All the existing implementations using deep learning for weather prediction
have attempted for relatively simplistic fields such as geopotential height, while we actually attempt
to improve global precipitation forecasts. We ensure that the sphericity of the global data over Earth
is considered and find vast improvements in deep learning augmented NWP forecasts relative to
the NWP alone. In future, we would use more precursors of precipitation from the NWP model for
generating deep learning augmented weather predictions. Further, hyperparameter tuning and neural
architecture search would be performed for performance enhancement.
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Appendix A Training details

The training is performed on a single NVIDIA A100 GPU with 40 GB GPU RAM. Since the size of
data is huge for I/O, loading on GPU and training, efficient use of TensorFlow dataloaders is made.
The total number of training samples is 5528 corresponding to the data from 1982 to 2000 with a
batch size of 8. The batch size is chosen to ensure that the heavy data can be trained on the A100
GPU by iterating on different choices. We use the adam optimizer, learning rate of 0.0001 and mean
squared error as loss function. Since I/O was a big overhead for the training, it is performed in loop
by training each year in one go and then improving the model for years that come after. We call it
incremental training and to prevent overfitting, early stopping is used.

Incorporating the effects of sphericity while also using a computer vision based deep learning model,
the latitude-longitude dataset is transformed to the cubed sphere mapping. We use the implementation
of tempest remap to perform the cubed sphere transformation. Cubed sphere is typically a cubical
sphere with 6 faces. Two of these faces represent the polar regions while four faces are over the
tropics. The resolution of each face of the cubed sphere that is used in this study is 256 x 256. The
choice of the cubed sphere resolution is determined by transforming from a regular latitude-longitude
grid to cubed sphere and then back to the regular latitude longitude grid. Errors induced by the cubed



sphere by a forward and backward pass are computed and the optimal cubed resolution of 256 x 256
is selected.

We use modified DLWP-CS (30) which is evolved from DLWP-CS (33) for training the deep learning
model. Modified DLWP-CS use a 2D UNET to perform an image to image regression for the cubed
sphere data to map from one or multiple variables to uni or multivariate target. The core of modified
DLWP-CS uses two 2D UNETS, one for the tropics and other for the poles. They are coupled to each
other in such a way that the data is exchanged while ensuring the same input and output matrix size
during convolution. Typically, in computer vision applications, a padding of zeros is used. However,
a global spherical data doesn’t have any real boundaries, so neighbouring edge of a cubed sphere
face is used for padding. This data exchange process ensures that the important global linkages such
as those to and from El Nino Southern Oscillation, North Atlantic Oscillation and Pacific Decadal
Oscillation are considered by the data-driven approach. The different input variables from CFSv2
model; viz, precipitation and temperature are fed as channels to the UNET from modified DLWP-CS.
The target is a single channel ERAS precipitation in cubed sphere projection.

Appendix B Preliminaries

Decades of scientific research into improving the global precipitation forecasts has led to the state
of the art NWP systems which are behind the operational weather prediction worldwide. Although,
NWP has been a success, problems remain in fields such as precipitation and soil moisture showing
high bias in their representation in the NWP models. The NWP systems are basically solutions of
governing equations of the atmosphere ocean and land which are coupled to each other. These partial
differential equations are solved by assuming Earth to be a sphere and initializing from appropriate
initial and boundary conditions. The equations are solved for prognostic fields such as pressure,
temperature, winds and tracers such as water vapor and ozone. Precipitation and soil moisture
are diagnostic fields which are derived by emperical relationships also known as parameterization
schemes taking in the prognostic fields as input. These parameterization schemes are challenging to
build and improve in the NWP systems and the problems with diagnostic fields are mostly attributed
to them. CFSv2 is a model which is used operationally for weather forecasting by different nodal
centers around the world.

Recently, studies (13} 23)) have shown the capability of deep learning to emulate weather systems
purely from a data-driven approach. However, these methods often lack the capability to deliver
a global product which can be directly used for societal applications. More on the limitations of
these studies has been discussed in section 1.1. Applications (32;33) have attempted to solve various
challenges in pure data-driven models such as addressing the sphericity of Earth (33)) and using global
datasets. However, they (32} 133) lack the strength of a unified deep learning NWP system. We use
ERAS reanalysis global precipitation as the ground truth target. ERAS reanalysis is a merged product
of satellite, gauge-based ground observations, ocean buoys and other instrumental data combined
with model outputs to generate a global product. It has shown fidelity to represent precipitation
similar to the observations.

Appendix C Climate Forecast system version 2 (CFSv2)

CFSv2 is a spectral model in which atmosphere, ocean and land compoents are coupled to each
other. Within the CFSv2, the atmospheric model is known as the Global Forecast System (GFS).
The atmospheric component of CFSv2, i.e. GFS has a spectral resolution has a spectral resolution of
T126 with 64 vertical levels (24). Ocean model of CFSv2 is the Modular Ocean Model developed
by the Geophysical Fluid Dynamics Laboratory (GFDL) (9). Arakawa-Schubert scheme is used
for convective parameterization with momentum mixing. CFSv2 incorporates the effects such as
orographic gravity wave drag and mountain blockage (14} [16). Rapid radiative transfer model is used
for the radiation computations in the atmosphere (12;6)). A four-layer land-surface model known as
the NOAH LSM (7)) and a dynamical two-layer sea ice model (35;134) are coupled to the atmosphere
and ocean components of CFSv2. CFSv2 hindcast simulations from 1982 to 2010 are downloaded.
The hindcast model simulations are initialized at an interval of 5 days for the years 1982-2010. A
total number of 4 ensemble members are generated for each intialization day of the model. We use
all the available ensembles for training.
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Figure 3: Absolute values corresponding to ERAS, deep learning augmented CFSv2 (DL) and CFSv2
are shown in the first three columns. Last two columns show the bias as difference between deep
learning augmented CFSv2 and CFSv2 alone. The rows correspond to the different lead times, viz, 1,
2 and 3 days. The figure shows example for South Asia extreme precipitation in 2005.

Appendix D ERAS reanalysis

ERAS dataset is provided by the European Center for Medium-Range Weather Forecasts (ECMWF)
and has been available since 2019. It consists of meteorological fields at hourly temporal intervals
and a global spatial resolution of 0.25 degrees. The data is available from the year 1979 which was
one of the reason for selecting ERAS reanalysis as the ground truth. Other global datasets such as
GPCC and GPCP are either available since the satellite era (1996 onwards) precipitation products
became available or are only over land. Recent studies have shown that ERAS reanalysis precipitation
provides a reasonable representation of the precipitation ().

Appendix E Case studies

We validate the skill of DeepNWP for specific examples viz, (i) Hurricane Katrina, (ii) Hurricane
Ivan, (iii) Cyclone Nargis, (iv) Europe flood 2010, (v) China flood 2010 and (vi) India flood 2005.
Spatial maps of absolute values corresponding to ERAS (similar to observations), deep learning
augmented CFSv2 and CFSv2 are shown at the lead time = 1, 2 and 3 days. The lead times are with
reference to the starting date of CFSv2 mode, i.e. since the time CFSv2 gets initialized. In addition,
the figures show difference in model predicted precipitation relative to ERAS for the three considered
lead times. Considering the individual hurricane, cyclone and flooding events, it can be seen that
CFSv2 has a much larger bias in the tropics relative to mid latitudes (figures @] Bl [l Bl [7). CFSv2
has a wet bias for the different events, even exceeding +20 mm/day over different regions across the
selected cases. DeepNWP reduces the bias to within the range -1 to +1 mm/day except for cyclone
Nargis. Cyclone Nargis shows humongous bias in CFSv2 from +20 to +47 mm/day while the deep
learning model reduces these errors from -5.37 to +2.34 mm/day for the three lead times considered.
A summary of these statistics is provided in the table 2}

Following are some case studies from the test data period corresponding to the years 2003-2010
showing the superior performance of deep learning augmented NWP:
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Figure 4: Same as figure [3|but for Hurricane Ivan in 2004.
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Figure 5: Same as figure 3] but for Europe flood in 2010.
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Figure 6: Same as figure 3] but for China floods in 2010.
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Figure 7: Same as figure 3] but for Myanmar cyclone Nargis that occurred in 2008

Events Lead = 1 day (mm/day) Lead =2 day (mm/day) Lead = 3 day (mm/day)
DL - ERA5 | CFSv2 - ERAS || DL - ERA5 | CFSv2 - ERAS || DL - ERAS | CFSv2 - ERAS

Hurricane Katrina -0.345 8.839 0.453 12.18 -0.811 10.227

Hurricane Ivan -0.22 8.466 -0.036 13.48 -1.485 13.135

Cyclone Nargis -5.37 21.151 -1.245 43.845 2.338 47.233
Europe Floods -0.2 6.654 -0.015 8.134 0.12 6.94

China Floods -0.17 11.233 0.465 18.903 -0.48 16.877

India flood 0.003 17.321 0.139 25.297 -0.749 20.259

Table 2: Performance of the deep learning augmented numerical weather prediction system CFSv2
versus CFSv2 alone. The table shows regional bias/error in simulating various extreme precipitation
events by the hybrid deep learning and CFSv2 system versus CFSv2 alone. The events occured as
(i) Hurricane Katrina in 2005, (ii) Hurricane Ivan in 2004, (iii) Cyclone Nargis in 2008, (iv) Europe
floods in 2010, (v) China flood in 2005 and (vi) India flood in 2005
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