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Abstract

As part of efforts to tackle climate change, grid-scale battery energy storage systems
(BESS) play an essential role in facilitating reliable and secure power system
operation with variable renewable energy (VRE). BESS can balance time-varying
electricity demand and supply in the spot market through energy arbitrage and in
the frequency control ancillary services (FCAS) market through service enablement
or delivery. Effective algorithms are needed for the optimal participation of BESS
in multiple markets. Using deep reinforcement learning (DRL), we present a
BESS bidding strategy in the joint spot and contingency FCAS markets, leveraging
a transformer-based temporal feature extractor to exploit the temporal trends of
volatile energy prices. We validate our strategy on real-world historical energy
prices in the Australian National Electricity Market (NEM). We demonstrate that
the novel DRL-based bidding strategy significantly outperforms benchmarks. The
simulation also reveals that the joint bidding in both the spot and contingency
FCAS markets can yield a much higher profit than in individual markets. Our
work provides a viable use case for the BESS, contributing to the power system
operation with high penetration of renewables.

1 Introduction and Background

Global warming will likely exceed 1.5 degrees Celsius in the 21st century, despite the nationally deter-
mined contributions (NDCs) committed before the 2021 United Nations Climate Change Conference
(COP26) [[1]. Mitigation efforts must be accelerated more urgently and rapidly [1]]. As the main pillar
for decarbonization, variable renewable energy (VRE) generation has been increasingly adopted in
modern power systems [2]]. This has also called for more energy storage to balance the increasing
VRE generation for system reliability and security [2,3]. Battery energy storage systems (BESS)
can swiftly switch between two working modes, i.e., discharge and charge (storage) [4], in response
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to the mismatch between VRE generation and electricity consumption for system reliability. Such
demand-supply mismatches are reflected by price fluctuations in the real-time electricity spot market
[S]], which creates the financial incentive for the BESS to enter into the spot market for price arbitrage
(i.e., buy low and sell high). Balancing demand-supply mismatch to minimize price volatility and
market distortion is also in the consumer’s interest. Apart from spot market participation, the BESS
can also be financially rewarded for providing frequency control ancillary services (FCAS) [6] in the
FCAS market for maintaining system security. Considering the multiple revenue streams the BESS
is exposed to, optimal scheduling to participate in both spot and FCAS markets at the same time
(i.e., joint bidding) is critical to unlocking the BESS’ full potential in supporting a high VRE power
system. Joint bidding is, however, challenging because the BESS has limited capacity, and energy
prices are highly stochastic.

In addressing the concern above, the most explored approach in the literature is to derive real-time
bidding strategies through stochastic optimization [7, 8], whose performance heavily relies on the
quality of price forecasting. It is, however, notoriously difficult to forecast energy prices due to the
high volatility of the spot and FCAS markets [9]] and complex price drivers. Alternatively, deep
reinforcement learning (DRL)-based methods have drawn increasing attention lately for their model-
free paradigm and data-driven characteristics [[L0H12]. DRL can adaptively capture the dynamics of
the electricity market in an online manner since it learns from historical data and past experiences.
Such learned dynamics would enable the DRL to yield a fast and better response even facing frequent
unexpected shifts in the underlying distribution of market prices [[13].

However, it appears that there is a significant research gap in the literature. BESS joint bidding in
multiple markets has not been adequately investigated [7, I8 [14} [15]], particularly in contingency
FCAS. The existing DRL-based methods [16, (17, [10H12, [18] tend to overlook the hidden temporal
information inside the volatile streaming market prices. The novelty of our work shows that extracting
the inherent temporal patterns in the underlying market prices will make the bidding strategy aware
of and sensitive to recent changes in energy prices, thereby making better bidding decisions.

In particular, we develop a temporal-aware DRL-based bidding strategy for the BESS participating in
both the energy spot (ES) and contingency FCAS markets. It leverages a transformer-based temporal
feature extractor (TTFE) to fully unlock the value of multiple streaming energy prices in both markets.
The new temporal-aware approach will help the BESS optimize charge/discharge for energy arbitrage
and bid capacity for FCAS service enablement to maximize the overall revenue. We validate our
method using the realistic electricity market data collected from the Australian National Electricity
Market (NEM) [19]], which supplies around 9 million customers with a trading value of 16.6 billion
Australian dollars per annum. We present our DRL-based bidding method in Section 2]

2 Methodology

To optimize the joint bidding of the BESS in both spot and contingency FCAS markets, we develop
a novel temporal-aware DRL-based bidding strategy with the help of TTFE as a feature extraction
technique based on the transformer [20]] to capture temporal patterns from time-series market prices.
We introduce the TTFE in Section 2.1] followed by Section[2.2] where we formulate the continuous
bidding problem as a Markov decision process and then introduce the soft actor-critic (SAC) algorithm
to learn an optimal joint-bidding strategy. The framework of the developed joint-bidding strategy is
illustrated in Fig. [T}

2.1 Transformer-based Temporal Feature Extractor

Through the extraction of temporal patterns by TTFE, the bidding strategy can be made more aware
of and sensitive to changes in energy prices. In the spot market, detecting recent price fluctuations
will assist the BESS in energy arbitrage, especially in discharging at higher prices. Whereas, being
sensitive to recent price changes in the contingency FCAS market, the BESS can reserve enough
capacity in advance in the event of a contingency.

We denote a price vector p; at each bidding interval (i.e., 5 minutes) containing market prices in the
spot and contingency FCAS markets. A temporal segment with length L is developed to store a series
of price vectors, including the latest L price vectors, which can be formulated as

St = (pt—L-‘rlvpt—L-‘rQa"' 7pt) € IRL><F7 (1)
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Figure 1: The framework of temporal-aware DRL-based joint bidding strategy.

where F represents the number of features, i.e., the number of participated markets.

To extract temporal patterns of market prices inside the temporal segment .S;, we introduce the
transformer for its powerful capability in handling temporal sequences to explore mutual influence
on market prices. Since the output of the transformer encoder is two-dimensional, i.e., the attention
matrix, we apply one-dimensional global average pooling [21]] to achieve feature extraction and
aggregation. For each bidding interval, we prepare such a temporal segment defined in Eq. (I, feed
it into the TTFE, and obtain the final extracted feature vector for the following DRL algorithm to bid,
which can be formulated as

= Pooling [TransformerEncoder ;)] € R***",

2
where I is the extracted feature dimension.

2.2 Learning Joint Bidding Strategy via DRL

The optimal joint bidding problem requires consecutive decision-making. We model such a continuous
process as a dynamic Markov decision process, consisting of four essential parts: state space S, action
space A, probability space [P, and reward space R [22]].

The BESS’s state is defined as the aggregation of the latest energy prices and the extracted tem-
poral features defined in Eq. (2), along with the BESS’s state of charge (SoC), denoted by
st = (SoCy, py, fi). For the action space A, the BESS takes action a; to allocate the current
battery capacity to bid in the ES and contingency FCAS markets. In DRL, an action strategy, ex-
pressed as 7 : S — w(A), is commonly applied to learn how to process different states and estimated
using function approximators [23]], i.e., neural networks, which map states to a probabilistic distri-
bution over actions. Designing an appropriate reward function r(s;, a;) plays a significant role in
optimizing the proposed MDP for BESS revenue maximization in real-time bidding since the reward
function assesses the quality of both the current state s; and the selected action 7(s;). Details about
the reward function are presented in Appendix A. We use SAC [24] to solve the developed MDP by
maximizing the expected total rewards, which is formulated as

T
max J(7) = max ZESWSMNW [r (s, ai)], 3
t=1
where T is the total number of bidding intervals. The associated algorithmic procedure is presented
in Appendix B.

3 Experimental Results

The proposed temporal-aware DRL-based bidding strategy is trained and evaluated using real-world
historical prices from 2016 to 2017 in the Victoria jurisdiction of the NEM. Specifically, energy
prices in 2016 are used for training the bidding strategy via SAC; we then test the learned strategy on
2017 energy prices. The energy prices in the spot and contingency FCAS markets are collected every



Table 1: Cumulative revenue of bidding strategies trained with/without the TTFE.

Bid Scenario

Without TTFE

With TTFE

Boost

ES Market

AUS 122,005 (£952)

AUS 197, 157 (£584)

62%

Contingency FCAS Market

AUS 45, 526 (£8)

AUS 64,219 (£37)

41%

Joint Market

AU$ 153,952 (£202)

AUS$ 238,608 (£349)

55%
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Figure 2: Evaluation results of bidding strategies trained with/without the TTFE.

5 minutes, i.e., the time resolution for one bidding interval. We use 1 Nvidia TITAN RTX graphics
process unit for training the DRL algorithms.

We compare three scenarios where the BESS can bid: 1) ES market only; 2) contingency FCAS
market only; 3) a joint market. To examine the effectiveness of the proposed TTFE, we trained the
DRL-based strategies without/with the TTFE. In addition, we developed a predict-and-optimize (PAO)
method [25] to compare our proposed strategy with the benchmark. The PAO method relies on an
LSTM network to forecast one-interval-ahead energy prices and a mixed integer linear programming
solver (from the PuLP library [26]) to optimize the cumulative revenue.

The corresponding results in VIC are illustrated in Fig. and respectively. The associated
cumulative revenue is also presented in Table [I] for cross comparison. We trained DRL-based
strategies 6 times to mitigate the randomness of the DRL algorithm with their corresponding averages
and standard deviations shown in Table [T}

From Fig. [24] joint-market bidding consistently generates higher revenue than individual market
participation. This is because simultaneous joint bidding can maximize the full potential of the BESS
and take advantage of the flexibility in both markets, which results in higher revenue.

Most importantly, introducing the TTFE can substantially improve the bidding performance and
revenue creation in all the three bidding scenarios. What stands out in Fig. [2b]is the significant
revenue boost after introducing TTFE in joint markets (shown in the red dash-dotted line). This
considerable improvement has surpassed the PAO method (shown in the green dashed line), where
our DRL-based strategy excels by approximately 16% (AU$32, 848 in total).

4 Conclusion

In this paper, we developed a model-free DRL-based strategy for bidding in energy spot and con-
tingency FCAS markets to maximize revenue in real time. The TTFE captures temporal patterns of
energy prices in both markets, allowing DRL-based bidding strategies to be aware of and sensitive
to price changes. Based on the modelling results, we can draw two major conclusions: 1) bidding
in joint markets can dramatically improve the viability of the BESS; and 2) the proposed TTFE
empowers the DRL-based bidding strategy to make better decisions, with outcomes significantly
outperforming the PAO benchmark. Future work will factor in battery degradation in joint bidding
and study bidding in other four jurisdictions of the NEM.
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Appendix

A: Reward Function Design in Optimal Bidding Strategy

r(se,ar) =1e0 + 0N (PR 4 R4 rPR) o (Y + R PR “4)
e =P (b$ChndCh - bihnld,) 7 ®)
il Cear R
,',,SR — bgChndChpng];R, (6)
R ™
’I"tSR _ b(tiCh'ﬂdChp§Rp§R, (8)
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ES, FR, FL, SR, SL, DR, and DL are abbreviations of energy arbitrage market, fast-raise contingency
FCAS market, fast-lower contingency FCAS market, slow-raise contingency FCAS market, slow-
lower contingency FCAS market, delay-raise contingency FCAS market, and delay-lower contingency
FCAS market. b{h/bS" are binary variables to determine discharging/charging operations of the
BESS. p; indicates the market clearing price (MCP). p; is the allocated capacity for bidding in the
corresponding market. 79" and M are denoted as discharging/charging efficiencies. pt> represents

the exponential moving average energy prices, formulated as
Pl =M+ (1= 5, (12)
where ) is the smoothing parameter.

I¢h and 19N in Eq. are indicators for the BESS to learn when to charge/discharge, formulated as

—1, S > pfs,

" =0, pfS =7, (13)
1, pfS < pfS,
_17 p]tES < ﬁ]tES’

M =20, P =pS, (14)

Lo o>,



B: The Algorithmic Procedure of the Temporal-aware DRL-based Bidding Strategy

The TTFE can be considered as a preprocessing unit for its sequential SAC algorithm. Combining
the output of TTFE f;, i.e., extracted temporal features of market prices, with market prices p; and
the BESS’s SoC, we formulate the state of the proposed MDP in Section [2.2]as

sy = (SoCy, py, ft) - (15)

The SAC algorithm defines an action strategy network 74 to allocate the BESS’s capacity for bidding
in the energy spot market and contingency FCAS market. The value network V,;, and Q network Qg
are proposed to assess the quality of bidding decisions and current states. We use gradient descent
to update the above three networks. The detailed algorithmic procedure of our DRL-based bidding
strategy is presented in Algorithm [T}

Algorithm 1 The Temporal-aware DRL-based bidding strategy

Initialise parameters of the TTFE.
Initialise parameters of the action strategy network ¢, value network 1), and Q network 6.
Initialise target value network 1) with 1: ¢ < 1.
Initialise the replay buffer B.
fort=1,---,7Tdo
Feed the temporal segment S; into TTFE, and obtain the extracted feature vector f.
Prepare the current state s;.
Get action a; = mp(s;) and reward ;.
if action violates capacity constraint then
a; < 0.
end if
Transit into the next state s, via P.
Store transition { s, a;, ¢, S¢1+1} into replay buffer B.
if collect sufficient transitions then
Update 74, Vy, and Qg using gradient descent
¢ — ¢ - 777TV¢J7T<¢)7
V<1 —nvVydy(¥),
00— UQVQJQ(Q).
Update target value network V¢
=T+ (1 —71).
end if
end for
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