Controllable Generation for Climate Modeling
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Abstract

Recent years have seen increased interest in modeling future climate trends, espe-
cially from the point of view of accurately predicting, understanding and mitigating
downstream impacts. For instance, current state-of-the-art process-based agricul-
ture models rely on high-resolution climate data during the growing season for
accurate estimation of crop yields. However, high-resolution climate data for future
climates is unavailable and needs to be simulated, and that too for multiple possible
climate scenarios, which becomes prohibitively expensive via traditional methods.
Meanwhile, deep generative models leveraging the expressivity of neural networks
have shown immense promise in modeling distributions in high dimensions. Here,
we cast the problem of simulation of climate scenarios in a generative modeling
framework. Specifically, we leverage the GAN (Generative Adversarial Network)
framework for simulating synthetic climate scenarios. We condition the model by
quantifying the degree of “extremeness" of the observed sample, which allows us
to sample from different parts of the distribution. We demonstrate the efficacy of
the proposed method on the CHIRPS precipitation dataset.

1 Introduction

Noticeable shifts in climate patterns have been observed over the last few decades, including an
increase in the frequency and intensity of extreme weather events. Such events often result in
severe societal impacts, with risks to agriculture, access to water resources, energy management and
transportation, among others [[1]. Therefore, accurate modeling and prediction of climate patterns is
of immense interest. For instance, process-based models, like crop growth or hydrological models,
that are used to assess potential impacts on climate-sensitive sectors [2, 3] generally require long time
series of high-resolution weather data [2} 4]].

Stochastic weather generators have been widely used to provide synthetic weather series that represent
plausible climate scenarios to the impact models [5, 16} 2} 3]]. The first stochastic weather generators
date to the 1980s [[7], and since then, several techniques have been explored with different levels
of complexity [4]. However, traditional models often fail to generate extremes such as droughts
or flooding [2]. Some weather generators can be conditioned on external variables, e.g. [2]], which
produces weather sequences consistent with temperature and precipitation seasonal forecasts. That
is, the external variables control the generation of weather fields. The idea of controlling weather
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field synthesis is essential for producing what-if scenarios to study its particular effects on sensitive
areas. For example, local governments may need to investigate the risks of floods in a region subject
to consecutive days of plausible heavy rainfall events.

In recent years, machine learning based generative models have achieved notable success in modeling
high dimensional complex distributions, which has led to their application in stochastic weather
generation. For instance, Variational AutoEncoders (VAESs) [8] have been used to generate precipi-
tation data and control synthesis by sampling from different regions of the latent space [9]], while
Generative Adversarial Network (GAN) [[10] based approaches have been shown to generate realistic
precipitation samples and model weather extremes [12]]. In this work, we make use of the GAN
framework for stochastic weather modeling, focusing on conditional generation. Conditional GANs
have shown great success in several tasks involving an input controlling the data generation, such
as image-to-image translation [[14] [I5]]. More recently, researchers have explored these models for
weather generation [12,[16]]. In this paper, we leverage the conditional GAN framework to generate
synthetic precipitation scenarios. For this, we propose a simple yet effective conditioning metric and
empirically demonstrate that it allows to accurately model and sample from different quantiles of
precipitation in the data distribution.

2 Methods and Experiments

Data For our experiments, we use the Climate Hazards Group InfraRed Precipitation with Station
data (CHIRPS) rainfall data set. It consists of daily precipitation fields with a spatial resolution
of 0.05 degrees, and spans from 1981-2021. For our experiments, we use a bounding box of 6.4
x 6.4 degrees, which equates to a resolution of 128 x 128 pixels, where each pixel represents a
geographical region spanning a spatial resolution of 0.05 x 0.05 degrees. The chosen spatial region is
bound by latitudes (18.0, 24.4) and longitudes (74, 80.4), a region in central India shown in Fig. [Ta

Researchers are often more interested in capturing seasonal trends, for instance precipitation during
the growing season. As such, we limit our focus to precipitation samples between June—October,
which roughly corresponds to the monsoon (rainy) season in central India. Fig. [Iblindeed verifies that
most precipitation in the region occurs during the selected months (roughly between days numbered
in the range 150-290). Additionally, we note that samples within this sub-interval successfully
capture most of the variation in the total amount of rainfall, allowing us to sub-sample from the large
amount samples without losing fidelity. Finally, for consistent evaluation of our method, we divide
our data into train and test sets, corresponding to years 1981-2011 and 2012-2021, respectively.
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(a) Region of interest in central India. (b) Rainfall distribution for a given year.

Figure 1: This figure depicts the chosen region for our experiments, along with the typical annual
rainfall distribution over that region.

Preprocessing For training deep models on this dataset, we require the samples to be suitably
normalized. However, note that unlike standard images which have a fixed support (0-255), pre-
cipitation values can be arbitrarily high and the large variations between individual pixel values
often increase the difficulty of the learning task, when using standard min-max or unit-Gaussian
normalization. To alleviate this issue, we first use a log transform on the individual pixel values,
specifically f(x) = log(1 + x) which suppresses the large outliers that can skew the data, followed
by standard min-max normalization such that pixel values lie in [0, 1] for all images. Finally, we
note that samples with zero rainfall equates to nearly 10% of the total training samples. Since, these



samples are not particularly interesting from a generative point of view (indeed, we can manually
create zero rainfall images), we discard the majority of them from the training set.

Method We consider the GAN framework. The standard GAN consists of two models: the generator
(G) and the discriminator (D). The generator, parameterized by 0, learns a distribution p, over the
data samples via a prior on its input noise variables p, (z) in the latent space, thus representing a map
to data space as G(z; 6,). The discriminator, parameterized as D(z;64), takes a sample in the data
space and outputs a single scalar D(z), that represents the probability that observed x came from
the true data distribution, as opposed to p,. D is trained to maximize the probability of correctly
distinguish training examples from samples coming via p,. Simultaneously, G is trained to minimize
the probability of detection via discriminator, resulting in the following minimax objective:

min Max By v, 108 D()Eap () 10g(1 = D(G(2))).
For the generator and discriminator networks, we use standard Resnet[18]]-based implementations.

Conditioning Note that within the standard GAN parametrization, the generator samples from the
prior p,(z), which is generally standard Gaussian, and maps it to the data space. However, due to the
uni-modal prior, the generated samples concentrate around the mode of the training data, which in
our case corresponds to low precipitation samples (since on average, most days have little/no rainfall).
Due to this concentration, obtaining diverse realistic samples corresponding to higher values of
rainfall becomes harder. To bypass this issue, we use conditioning in the GAN framework to guide the
generation. To allow sampling from different parts of the distribution, we first obtain the distribution
of the total rainfall per daily precipitation field, across the entire dataset. We then discretize the
distribution into a histogram with n bins, as indicated in Fig. ] Note that bin membership in the
histogram serves as a pseudo-measure for the “extremeness” of the sample. In this example, the first
bin corresponds to low values of total rainfall, whereas bin 5 corresponds to extreme samples. Hence,
we can use bin membership M € {1,...,n} as a conditioning variable to guide our generation. In
practice, this is implemented as in standard conditional GANs with an embedding layer, which is
appended to the noise prior to indicate the value of the membership.
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Figure 2: This figure depicts our method of conditional generation based on total rainfall, where each
quantile in the discretized rainfall distribution represents a value the conditioning variable can take.

Sampling Note that conditioning by itself does not resolve the uni-modal concentration problem,
since the model would largely see samples from the first bin during training. To resolve this, we use
weighted sampling during training, defining a sampling weight w; for each sample in a given bin ¢
as w; o< W, where N (7) is the number of samples in bin 4, T is the total number of training
samples, and k is a parameter that controls the degree to which sampling resembles uniform. We set
k to a small value to ensure that we roughly observe equal samples from each bin, thus oversampling

from the higher rainfall quantiles.

3 Results

GAN evaluation is a notoriously hard problem [19], since the objective function does not link directly
to the data distribution. For image tasks, Frechet Inception Distance (FID) [20] is a popular method



of evaluation but it depends on features learnt on natural images, which has a different distribution
from our dataset. Therefore, we rely qualitatively on visual inspection (Fig. [) and quantitatively, on
comparing the density of the rainfall distributions over the generated samples and the test set (Fig. ).
For the latter, we sample equal number of samples(~ 600) from each quantile in the histogram and
evaluate the corresponding Kernel Density Estimates (KDE) [21] against samples from the test set.

(a) Training Samples (b) Generated Samples

Figure 3: Row i corresponds to samples from the i" quantile and while some high level details are
missed, we observe that total rainfall for generated the sample increases with increasing quantile.

Figure 4: Total rainfall density comparison shows generated samples match the test distribution.

With regards to visual inspection, we observe the efficacy of our scheme in generating diverse samples
from different rainfall quantiles. In the KDE comparison, we note that the densities from the two
domains indeed match closely. However, there remains scope for improvement. First, we note
the presence of grid-like artefacts, which is known to be associated with transposed convolutional
operators. Secondly, the network has a tendency to smooth-en out the spatial extremes, pointing
towards the need for a finer grained conditioning, for better control over individual patches in the
image.

4 Discussion

In this work, we developed a novel method of conditioning weather generators that serves as an
effective tool for controlling the synthesis of weather fields. Our work opens up multiple lines of
future work. Firstly, we note that a finer grained discretization would enable more control of the
generation process, including that of extreme scenarios. Secondly, this method can easily be extended
for generation of other weather variables and to a different choice of statistics. Additionally, note that
we can extend this method for generating higher resolution images: one could create corresponding
lower resolution maps whose each co-ordinate conditions/defines the extremeness of a mini-grid in
the higher resolution image. Finally, experimenting with this method in other generative frameworks
such as state-of-the-art diffusion models is another interesting line of research.
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