Comparing the carbon costs and benefits of low-
resource solar nowcasting
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Motivation

Climate change is an important problem
Decarbonising requires integrating renewables
Solar PV yield is uncertain due to clouds

National Grid keeps gas reserves spinning in case
of unanticipated drops in supply

e Improved short-term solar PV forecasts would
reduce spinning-gas buffer

OCF has beenworking with National Grid since 2019to
develop betterforecasts

The UK’s Energy National Control Centre



Related work

Machinelearning and weather forecasting
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Research hypotheses

Can low-resource models such as CNNs and ConvLSTMSs produce accurate forecasts?
Can such models deliver sufficient benefits to justify their carbon cost?



Datasets

1. Satelliteimages - 5 minute intervals, UK region (EUMETSAT* and OCF)
2. Solar photovoltaicreadings - 5 minute intervals, 1300 stations, in watts (OCF)
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*European Organisation for the Exploitation of Meteorological Satellites




Task : predict a sequence of future PV readings

Comparison recurrent architecture - ConvLSTM and LSTM inputs
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Results and evaluation of hypotheses
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Emissions costs and benefits

Generated
Conv3D ConvLSTM
Time to train model (s) 916.39 673.11
Time for inference, one forecast (s) 0.16 2.21
Implies: Total time for year (training + 1686,300 * inferences) (hrs) 75 1024
Emissions generated (tonnes), assuming 0.21 kgCO2 eq/kWh 0.0108 0.152
Reduced
e Harder to estimate
e UK energy supply from solar is expectedto rise from 2% today to 7% by 2050
e Pergigawatt hour, a solar plant generates 1/ 2000th of the emissions of a gas turbine
e \We pessimisticallyassume models are 0.1% betterthan the current standard, and only in 0.05%

of cases we may be able to turn off gas-reserves
e Impliesareductionof we may be looking at a reduction of around 5500 tonnes of C02 annually.



Conclusion

Low-resource models are able to significantly outperform persistence forecasts

Even under pessimistic assumptions, clear potential carbon benefitfrom more accurate forecasts
Further analyses are needed to understand the benefitthat larger and deeper models could bring
More in depth understanding of current strategies implemented by grid operators globally needed



