

Estimating Corporate Scope 1 Emissions Using Tree-Based Machine Learning Methods

Maida Hadziosmanovic

Concordia University, Montreal, Canada

Elham Kheradmand

Université de Montréal, Montreal, Canada

Introduction

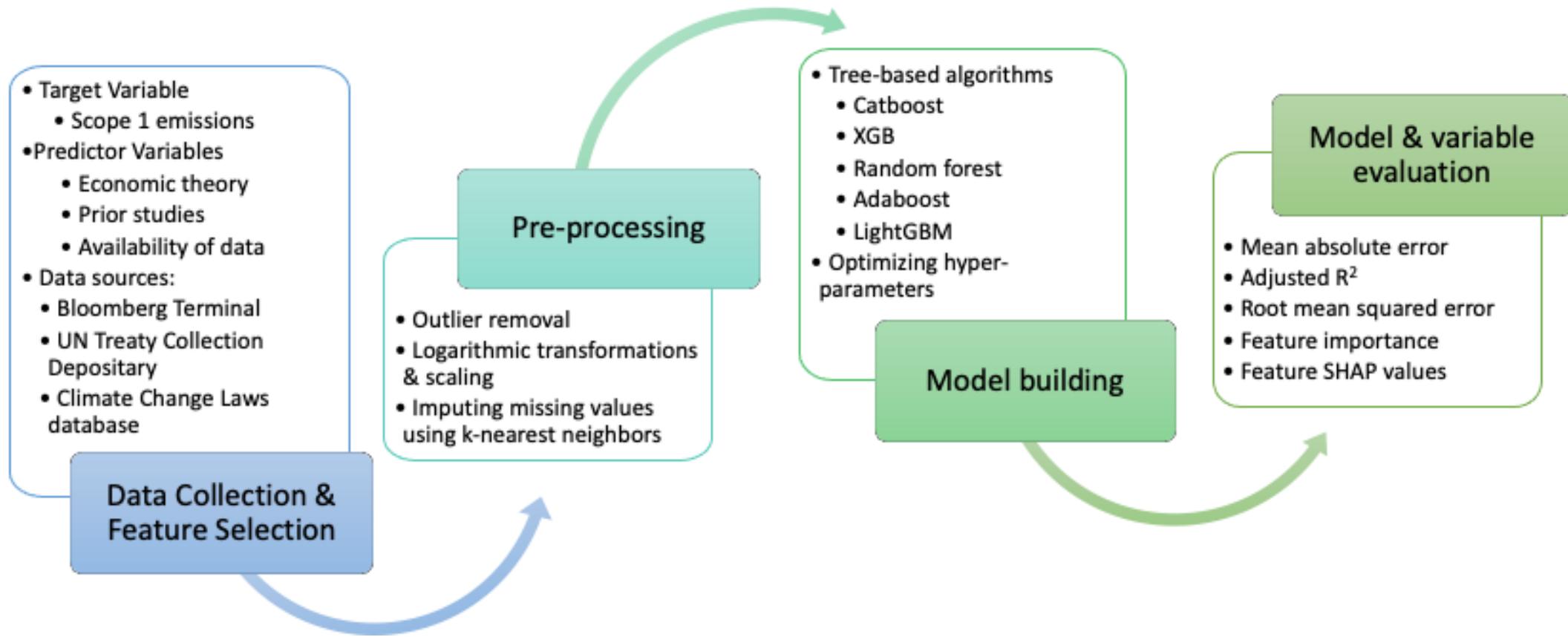
- <5% of public companies disclose their **direct (Scope 1)** GHG emissions¹
- Difficult to **reconcile company-level emissions with national & global GHG estimates** – *essential for assessing decarbonization efforts*²
- There is a need to track & corroborate emissions **target** and **reduction** claims³

Related Works

- GHG estimation **models can fill the gap** in corporate emissions data
- Three machine learning (ML) models from the literature^{4,5,6}
- **Tree-based** algorithms have shown the best results
- Limitations of these ML models:
 - Large set of features rendering model complex & difficult to replicate
 - Feature data is not easily accessible or available
 - Estimate other scopes of emissions (e.g., scopes 2, 3)
- ML techniques for estimating corporate emissions are in the **early stages**

Objective

- Fill in the corporate emissions data gap by:
 - training a series of models based on **decision trees** for the **estimation** of company-level **Scope 1 emissions**

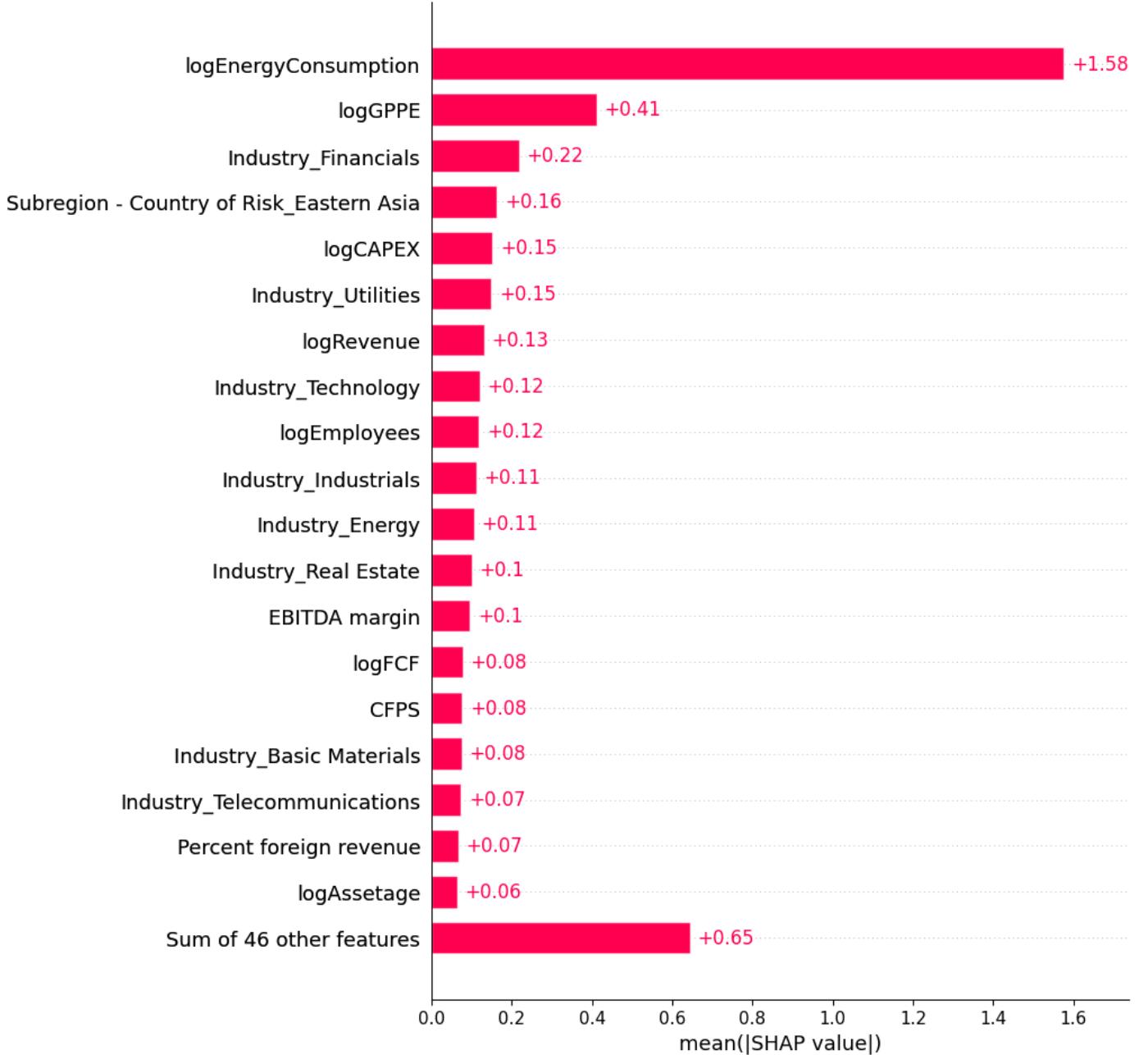


Data & Methods

Results

Model	RMSE	MSE	MAE	MAPE	Adjusted R2	MAE (Nguyen et al. 2021)	MAE improvement against benchmark model (%)
Catboost-1	1.43	2.03	0.96	0.32	0.81	n/a	6.80%
Catboost-2	1.41	1.99	0.96	0.29	0.82	n/a	6.80%
XGB	1.30	1.69	0.83	0.29	0.84	1.03	19.42%
Random Forest	1.32	1.74	0.87	0.30	0.84	1.03	15.53%
Adaboost	1.94	3.77	1.38	0.36	0.661	n/a	-33.98%
LightGBM	1.31	1.73	0.86	0.30	0.84	n/a	16.50%

Results



Discussion

- Result show **significant improvement** in accuracy of our XGBoost model compared to benchmark model
- We show that Scope 1 emissions can be estimated with models of **lower complexity & greater computational efficiency**
- Model can be used for **data gap-filling** – allows for better GHG accounting & tracking

"what gets measured, gets managed"

References

1. Hadziosmanovic, M., Lloyd, S. M., Bjørn, A., Paquin, R. L., Mengis, N., & Matthews, H. D. (2022). Using cumulative carbon budgets and corporate carbon disclosure to inform ambitious corporate emissions targets and long-term mitigation pathways. *Journal of Industrial Ecology*. 1-13. <https://doi.org/10.1111/jiec.13322>
2. Luers, A., Yona, L., Field, C. B., Jackson, R. B., Mach, K. J., Cashore, B. W., ... & Joppa, L. (2022). Make greenhouse-gas accounting reliable—build interoperable systems. *Nature*.
3. NewClimate Institute. (2022). Corporate Climate Responsibility Monitor. <https://newclimate.org/sites/default/files/2022-06/CorporateClimateResponsibilityMonitor2022.pdf>
4. Han, Y., Gopal, A., Ouyang, L., & Key, A. (2021). Estimation of Corporate Greenhouse Gas Emissions via Machine Learning. *arXiv preprint arXiv:2109.04318*.
5. Serafeim, G., & Velez Caicedo, G. (2022). Machine Learning Models for Prediction of Scope 3 Carbon Emissions. Available at SSRN.
6. Nguyen, Q., Diaz-Rainey, I., and Kuruppuarachchi, D. Predicting corporate carbon footprints for climate finance risk analyses: A machine learning approach. *Energy Economics*, 95:105129, 2021. ISSN 0140-9883. doi: <https://doi.org/10.1016/j.eneco.2021.105129>