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Abstract

Companies worldwide contribute to climate change, emitting significant amounts of
greenhouse gases (GHGs). Yet, most do not report their direct or Scope 1 emissions,
resulting in a large data gap in corporate emissions. This study aims to fill this gap
by training several decision-tree machine learning models to predict company-level
Scope 1 emissions. Our results demonstrate that the Extreme Gradient Boosting and
LightGBM models perform best, where the former shows a 19% improvement in
prediction error over a benchmark model. Our model is also of reduced complexity
and greater computational efficiency; it does not require meta-learners and is trained
on a smaller number of features, for which data is more common and accessible
compared to prior works. Our features are uniquely chosen based on concepts of
environmental pollution in economic theory. Predicting corporate emissions with
machine learning can be used as a gap-filling approach, which would allow for
better GHG accounting and tracking, thus facilitating corporate decarbonization
efforts in the long term. It can also impact representations of a company’s carbon
performance and carbon risks, thereby helping to funnel investments towards
companies with lower emissions and those making true efforts to decarbonize.

1 Introduction

In light of the climate crisis and the significant amounts of greenhouse gases (GHGs) emitted by
companies, stakeholders have been pressuring on them to disclose their GHG emissions [1,2]. While
companies that conduct carbon footprints typically report their emissions voluntarily [3], some
countries or regions have mandatory reporting requirements. However, such schemes are often
limited to certain industries and/or companies emitting beyond some threshold [4,5]. Research has
shown that less than 5% of public companies actually disclose their direct (Scope 1) GHG emissions
[6], and it is likely that even less disclose indirect (Scope 2 and 3) emissions, as demonstrated by
disclosure patterns in prior research [7ﬂ This gap in corporate emissions data presents several

A company’s carbon footprint is typically calculated according to three emissions categories: Scope 1 (direct
emissions from sources owned or controlled by the company), Scope 2 (indirect emissions from the generation
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problems. First, it makes it difficult to reconcile company-level emissions with industry, national,
and global GHG estimates, which is essential for assessing decarbonization efforts accurately [9].
Second, since many companies have begun announcing ambitious emissions targets and claiming
emissions reductions [10,11], there is a greater need to track and corroborate such claims in order to
hold companies accountable for their polluting activities. Finally, the lack of company-level GHG
data poses challenges for evaluating carbon performance and carbon risk accurately for investment
portfolio construction [12], in turn impacting where investments are funneled. Ideally, investments
would be directed to companies making true efforts to decarbonize, yet in reality, this is difficult to
ensure due to missing GHG accounts.

1.1 Related Works

To address this gap in corporate emissions data, GHG estimation models have cropped up as potential
solutions. Data providers, such as Morgan Stanley Capital International (MSCI), CDP (formerly
Carbon Disclosure Project), and Thomson Reuters have developed models to estimate emissions
based on various company features [12,13]. The CDP uses statistical regression techniques, while
MSCI and Thomson Reuters use simple calculations that rely on data availability of a company’s
energy figures or historical emissions, or simply industry-averaged data [14,15,16]. The academic
research is limited to two statistical models (17,18) and three machine learning (ML) models [19, 13,
20]. Statistical approaches are constrained by the motive of making inferences about populations
from specific samples [21], relying on “in-sample goodness-of-fit rather than the out-of-sample
prediction accuracy,” [13]. In contrast, ML models can predict data by finding patterns in complex
datasets, allowing for greater out-of-sample prediction accuracy [21, 13, 19] use the Light Gradient
Boosting Machine (GBM) to estimate Scope 1 and 2 emissions, training the model on over 24,000
company-year GHG observations and over 1,000 predictor variables from the Bloomberg Terminal,
with no clear justification for the choice of predictors. A large set of features renders the model
complex and difficult to replicate, while including unnecessary features in a model may cause
overfitting or deteriorate performance. Nguyen et al. [13] use a much smaller sample (>2,000
company-year GHG observations), and rely on a specific selection of predictors to estimate Scope 1,
2, 3, and total emissions. Their model is developed as a meta-learner (Elastic Net) which aggregates
predictions from six base-learners. Of the base learners, the best performing is the tree-based learners,
which include Extreme Gradient Boosting (XGBoost) and Random Forest. Serafeim and Caicedo
[20] compare Random Forest and Adaptive Boosting (AdaBoost) to estimate Scope 3 emissions
exclusively, finding that AdaBoost performs best. Overall, research on ML techniques for estimating
company-level emissions is in its early stages and there is a need for further improvement and
exploration in this area.

1.2 Objective and contribution

This study addresses this need by training a series of ensemble models based on decision trees for
the estimation of company-level Scope 1 emissions. We train tree-based models exclusively because
they have resulted in the greatest accuracies in prior relevant studies. Our results show that XGBoost
performs best, showing an improvement in mean absolute error (MAE) of 19% compared to the
Scope 1 base-learner by Nguyen et al. [13]. We contribute to the literature in two key ways. First,
in contrast to other existing ML models, our model is of reduced complexity and computational
cost, as it is based on a smaller number of features for which data is more commonly reported and
accessible. Second, we make a theoretical contribution, showing that explanations of climate change
as an externality in economic theory can be used to direct the choice of predictors of corporate GHG
emissions in ML estimation models.

2 Data and methodology

Our overall approach is depicted in Figure 1, and is described throughout this section.

of purchased electricity, steam, heat, or cooling); and Scope 3 (all other indirect emissions resulting from sources
not owned or controlled by the company) [8]



2.1 Data collection and feature selection

We first collected target variable data (Scope 1 emissions) for all public companies globally from
the Bloomberg Terminal for the fiscal years 2018-2020, removing emissions reported as zero. We
then collected feature data from the Bloomberg Terminal [22], United Nations Treaty depositary [23],
and Climate Change Laws of the World database [24]. To select predictor variables for the models,
we derived leading questions by drawing on economic theory to identify the potential reasons for
varying levels of direct GHG emissions at the company-level and why companies might act to reduce
these emissions. The answers to these questions guided our choice of feature variables. We also
considered common features used in prior works and the level of data availability of each feature in
our sample, excluding features that had greater than 50% missing data within our initial sample. Our
features included variables that relate to industry, physical assets, company size, energy consumption,
profitability, liquidity, corporate climate initiatives, climate change management in the company,
characteristics of the board of directors, company location, multi-nationality, and presence of carbon
regulations in the company’s locations. A comprehensive list of the features, their sources, and the
leading questions derived from economic theory are displayed in Tables 2] and [3]in Appendix

2.2 Data pre-processing

Next, we pre-processed data by removing outliers, and transforming numerical non-ratio and percent-
age variables to a logarithmic scale (see Appendix for further details). We then estimated missing
values of numerical predictor variables using the k-nearest neighbors algorithm. We chose the
optimal value of k based on the performance of a Random Forest model for the prediction of Scope 1
emissions (see Appendix [A.3). Our final data set after preprocessing included 13,041 company-year
observations.

2.3 Tree-based models

In this study, we focus on decision tree models rather than other model types (e.g., neural networks,
k-nearest neighbors) for several reasons. Previous studies that experimented with ML models to
estimate company emissions have consistently shown that tree-based models performed best on a
range of predictors, especially financial metrics [19,13,20]. In addition, in terms of functionality, tree-
based models are known to handle categorical data, they are well-suited for non-linear relationships,
and they are largely immune to multicollinearity between predictive feature data [25,26].

We ran the following tree-based algorithms in Python: CatBoost, XGBoost, LightGBM, AdaBoost,
and Random Forest. We ran two iterations of the CatBoost algorithm; for the first, we used the original
encoding solution provided for categorical data in CatBoost on the following variables: industry,
subregion of domicile, and subregion of riskﬂ For the second, we applied one-hot encoding on
these categorical variables. Since the other tree-based models do not have a predetermined encoding
methodology for handling categorical data, we used one-hot encoding on these variables. Our training
set was on 80% of the dataset, and the hold-out was 20% of the dataset. We used 10-fold cross
validation to fine-tune the hyperparameters for each model.

3 Results and Discussion

Our main results in Table 1 present different performance evaluation metrics for each model, including
root mean squared error (RMSE), mean squared error (MSE), mean absolute error (MAE), mean
absolute percentage error (MAPE), and adjusted R? values. We compare these results to those of
the XGBoost Scope 1 emissions base-learner developed by Nguyen et al. [13] (henceforth, the
benchmark model), since this is the only other academic study to our knowledge that has trained a
model to estimate corporate Scope 1 emissions.

Overall, the best performing model is XGBoost, followed by LightGBM and Random Forest. The
RMSE values are 1.30, 1.31, and 1.32 respectively, and are lower than that of the benchmark model,
which is 1.40. Our adjusted R? (A-R2) for the XGBoost, LightGBM, and Random Forest models
are also higher than the benchmark model, indicating that our set of predictor variables may better

2See the section “Transforming categorical features to numerical features” in the online CatBoost supporting
documents for further information (https://catboost.ai/en/docs/concepts/algorithm-main-stages_cat-to-numberic)



Table 1: Prediction performances of the trained models

Model RMSE MSE MAE MAPE A-R2 MAE MAE-I (%)
(Nguyen

et al. 2021)
CatBoost-1 1.43 2.03 0.96 0.32 0.81 - 6.80
CatBoost-2 1.41 1.99 0.96 0.29 0.82 - 6.80
XGBoost 1.30 1.69 0.83 0.29 0.84 1.03 19.42

AdaBoost 1.94 3.77 1.38 0.36 0.66 - —33.98

LightGBM 1.31 1.73 0.86 0.30 0.84 - 16.50
Random Forest 1.32 1.74 0.87 0.30 0.84 1.03 15.53

explain the variation in the output (target) variable. We also see an overall improvement in MAE
(MAE-I) by 19.42% in XGBoost and 16.50% in LightGBM, compared to the benchmark model.

Figure 3 shows the top 20 features by overall feature importance in the XGB model based on mean
absolute SHapley Additive exPlanations (SHAP) values. SHAP can be used as a way to interpret
ML models, explaining the impact or contribution of a feature on the model’s prediction [27]. The
most important feature in the XGBoost model is energy consumption (SHAP value of 1.58), followed
by gross property, plant and equipment (GPPE) (SHAP value of 0.41). Prior studies have also
demonstrated the importance of energy and assets in predicting emissions [13, 20].

To understand the effect of features on the entire dataset, we present a bee swarm plot in Figure 4,
which shows the impact of the top 20 features by importance on the prediction when a SHAP value is
negative (meaning a negative contribution to the prediction), zero (meaning no contribution to the
prediction), and positive (meaning a positive contribution to the prediction). For example, higher
values of energy consumption (logEnergyConsumption) will have a positive (increasing) contribution
to the prediction of Scope 1 emissions, and lower values will have a negative contribution. For
companies in the Financials, Technology and Real Estate industries, (binary variables where 1
indicates a company is in the industry and O indicates it is not), the prediction is negatively impacted.
In contrast, the Utilities and Energy industry features have a positive contribution to the prediction.
The overall importance of a company’s industry for estimating carbon footprints has been established
in prior studies as well [13,20]. Other features show less clarity with respect to the direction of the
contribution, such as the age of assets (logAssetage), since both high and low values show both
positive and negative contributions. Future directions of this research may look to use SHAP results
to further streamline the choice of features in the model.

Altogether, our study establishes the usefulness of tree-based models for estimating corporate emis-
sions. Our results point to a significant improvement in the accuracy of our XGBoost model compared
to the benchmark model for predicting Scope 1 emissions. As our model does not employ meta-
learners and uses less, more commonly available features, we have shown that Scope 1 corporate
emissions can be estimated with models of lower complexity and greater computational efficiency.
Moreover, we have shown that model results could be improved with a feature selection methodology
that is founded on economic theory. In the absence of widely available corporate Scope 1 emissions
data, this model can be used as a gap-filling approach. This is important in the context of climate
change because it would allow for better GHG accounting and tracking, and, following the adage of
“what gets measured, gets managed”, would facilitate corporate decarbonization efforts. It could also
contribute to more accurate representations of a company’s carbon performance and risks, thereby
supporting investments directed at companies making mitigation efforts and lowering their GHG
emissions.



4 References

[1] Chithambo, L., Tingbani, 1., Agyapong, G. A., Gyapong, E., & Damoah, I. S. (2020). Corporate
voluntary greenhouse gas reporting: Stakeholder pressure and the mediating role of the chief executive
officer. Business Strategy and the Environment, 29 (4), 1666-1683.

[2] Liesen, A., Hoepner, A. G., Patten, D. M., & Figge, F. (2015). Does stakeholder pressure influence
corporate GHG emissions reporting? Empirical evidence from Europe. Accounting, Auditing &
Accountability Journal, 28(7), 1047-1074. https://doi.org/10.1108/AAAJ-12-2013-1547

[3] Depoers, F., Jeanjean, T., & Jérdme, T. (2016). Voluntary Disclosure of Greenhouse Gas
Emissions: Contrasting the Carbon Disclosure Project and Corporate Reports. J Bus Ethics 134,
445-461. doi:10.1007/s10551-014-2432-0

[4] Organisation for Economic Co-operation and Development and Climate Disclosure Standards
Board (OECD and CDSB). (2015). Climate change disclosure in G20 countries: Stocktaking of corpo-
rate reporting schemes. https://www.oecd.org/environment/cc/g20-climate/collapsecontents/Climate-
Disclosure-Standards-Board-climate-disclosure.pdf

[5] European Commission. (2018). Commission Implementing Regulation (EU) 2018/2066 of 19
December 2018 on the monitoring and reporting of greenhouse gas emissions pursuant to Directive
2003/87/EC of the European Parliament and of the Council and amending Commission Regulation
(EU) No 601/2012. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02018R2066-
20210101

[6] Hadziosmanovic, M., Lloyd, S. M., Bjgrn, A., Paquin, R. L., Mengis, N., & Matthews, H. D.
(2022). Using cumulative carbon budgets and corporate carbon disclosure to inform ambitious
corporate emissions targets and long-term mitigation pathways. Journal of Industrial Ecology. 1-13.
https://doi.org/10.1111/jiec.13322

[7] Ryan, J., & Tiller, D. (2022). A Recent Survey of GHG Emissions Reporting and Assurance.
Australian Accounting Review, 101(32), 181-187.

[8] World Resources Institute and World Business Council for Sustainable Develop-
ment (WRI & WBCSD). (2004). A Corporate Accounting and Reporting Standard.
https://ghgprotocol.org/sites/default/files/standards/ghg-protocol-revised.pdf

[9] Luers, A., Yona, L., Field, C. B., Jackson, R. B., Mach, K. J., Cashore, B. W., ... & Joppa, L.
(2022). Make greenhouse-gas accounting reliable—build interoperable systems. Nature.

[10] NewClimate Institute. (2022). Corporate Climate Responsibility Monitor.
https://newclimate.org/sites/default/files/2022-06/CorporateClimateResponsibilityMonitor2022.pdf

[11] Science Based Targets (SBT). (2020). Companies  taking action.
https://sciencebasedtargets.org/companies-taking-action

[12] Gurvich, A., & Creamer, G. G. (2021). Overallocation and Correction of Carbon Emissions in
the Evaluation of Carbon Footprint. Sustainability, 13(24), 13613.

[13] Nguyen, Q., Diaz-Rainey, 1., and Kuruppuarachchi, D. Predicting corporate carbon footprints for
climate finance risk analyses: A machine learning approach. Energy Economics, 95:105129, 2021.
ISSN 0140-9883. doi: https://doi:org/10:1016/j:eneco:2021:105129

[14] CDP. (2020). CDP Full GHG Emissions Dataset Tech-
nical Annex I1I: Statistical Framework. https://cdn.cdp.net/cdp-
production/comfy/cms/files/files/000/003/028/original/2020_01_06_GHG_Dataset_Statistical_Framework.pdf

[15] MSCI. (2016). Filling the Blanks: Comparing Carbon Estimates Against Disclosures.
https://www.msci.com/documents/10199/139b2ab7-c95f-4f09-9d33-fdc491c5316e

[16]  Refinitiv. Refinitiv.  ESG, Carbon Data and Estimate  Models.
https://www.refinitiv.com/content/dam/marketing/en_us/documents/fact-sheets/esg-carbon-
data-estimate-models-fact-sheet.pdf

[17] Goldhammer, B., Busse, C., & Busch, T. (2017). Estimating corporate carbon footprints with
externally available data. Journal of Industrial Ecology, 21(5), 1165-1179.



[18] Griffin, P. A., Lont, D. H., & Sun, E. Y. (2017). The relevance to investors of greenhouse gas
emission disclosures. Contemporary Accounting Research, 34(2), 1265-1297.

[19] Han, Y., Gopal, A., Ouyang, L., & Key, A. (2021). Estimation of Corporate Greenhouse Gas
Emissions via Machine Learning. arXiv preprint arXiv:2109.04318.

[20] Serafeim, G., & Velez Caicedo, G. (2022). Machine Learning Models for Prediction of Scope 3
Carbon Emissions. Available at SSRN.

[21] Bzdok, D., Altman, N. & Krzywinski, M. (2018). Statistics versus machine learning. Nat
Methods 15, 233-234. https://doi.org/10.1038/nmeth.4642

[22] Bloomberg, L. P. (2022). Bloomberg database. Bloomberg Terminal.

[23] United Nations Treaty Collection. (2016). 7. d Paris Agreement (Chapter XXVII).
United Nations. https://treaties.un.org/Pages/ViewDetails.aspx?src=TREATY &mtdsg_no=XXVII-
7-d&chapter=27&clang=_en

[24] Grantham Research Institute on Climate Change and the Environment and Sabin Center for
Climate Change Law (GRICC & SCCCL). (2022). Climate Change Laws of the World database.
Available at: https://climate-laws.org

[25] Malehi, A. S., & Jahangiri, M. (2019). Classic and bayesian tree-based methods. In P. Vizureanu.
Enhanced Expert Systems (pp. 27-52). IntechOpen. doi: 10.5772/intecopen.79092

[26] Singh, A., Thakur, N., & Sharma, A. (2016). A review of supervised machine learning algo-
rithms. In 2016 3rd International Conference on Computing for Sustainable Global Development
(INDIACom) (pp. 1310-1315). Ieee.

[27] Marcilio, W. E., & Eler, D. M. (2020). From explanations to feature selection: assessing shap
values as feature selection mechanism. 2020 33rd SIBGRAPI conference on Graphics, Patterns and
Images (SIBGRAPI) (pp. 340-347). IEEE. https://doi.org/10.1109/SIBGRAPI51738.2020.00053

[28] Ayres, R. U., & Kneese, A. V. (1969). Production, consumption, and externalities. The American
Economic Review, 59(3), 282-297.

[29] United Nations Statistics Division. (2022). Country and Area Codes (M49).
https://unstats.un.org/unsd/methodology/m49/overview/

A Appendix

A.1 Feature Selection: An economic perspective on emissions predictors

We used economic theory to guide our choice of features for the models. Economic theory recognizes
environmental issues, including GHG pollution, as an externality. Externalities can be understood
as market failures resulting from the inefficiency of the production and consumption of goods and
services [28]. In the corporate sector, the quantities and varying production mechanisms of different
products and services impact these GHG emissions by-products, as well as a company’s capacity to
manage these by-products. This is represented by the predictors associated with questions 1, 2, and 3
(Table[2). Economic theory resolves the issue of externalities by finding ways to internalize the costs
of pollution. Pressures and incentives to internalize these costs vary, and can be internal (e.g., the
board) or external (e.g., government imposed emissions allowances) to the company. The predictors
associated with questions 4 and 5 (Table[3) represent such internal and external pressures.

A.2 Feature Details
Highest level at which climate change is managed This predictor includes 5 categories:

* Board/subset of Board/committee appointed by Board
* Subset of Board/Committee appointed by Board

* Manager/Officer

* No individual or committee

¢ Unknown



Table 2: Feature selection supported by economic theory

Question Leading questions Explanatory Predictor variable Source of
number (economic perspective) feature data
Industry International Bloomberg
. Classification, Terminal
The production of Benchmark (ICB)
which products or Indust
1 services impact ndustry
emissions .
.. Physical assets Gross Property, Plant, Bloomberg
?
(externalities)? and Equipment; Asset Terminal
age; Capital
expenditure (CapEx)
Company size Revenue Bloomberg
How does the quantity Terminal
2 of product.s or services Company size Number of employees  Bloomberg
produced impact Terminal
emissions
(externalities)? Energy Energy consumption Bloomberg
consumption (MWh) Terminal
Return on assets Bloomberg
(ROA); Return on Terminal
. equity (ROE);
What ’ :
3 at1s a company s Profitability and ~ EBITDA margin,
capacity to internalize liquidity Free cash flow (FCF);

(mitigate) emissions? Cash flow per share

(CFPS); Cash flow
from operations (CFO)

Some fields did not stipulate one of these categories explicitly or exactly, but included more detailed
information. To simplify such information in these fields, we assessed each answer that was given in
this field manually, categorizing them in one of the five categories listed above. For example, the
answer:

"Whilst climate change is not considered at Board level, the Legal Director is
responsible for monitoring emerging regulations including climate change and the
Finance Director is responsible for monitoring energy and business travel costs.
Both are IG Group Board members."

was assessed as belonging to the category “Subset of Board/Committee appointed by Board”.

Country of domicile, country of risk, and associated subregions Bloomberg defines Country
of Domicile as the location of management. Country of Risk is determined differently for every
company, but may largely depend on where the company generates its highest amount of revenue, or
its primary currency [22]. Country of domicile and country of risk were provided as ISO codes. We
thus converted all ISO codes to country names. Where no country was indicated for either country
domicile or country of risk, the entire row was removed. The subregion of the country was then
assigned according to the United Nations subregion categories [29]. Subregions were used instead of
countries to reduce the cardinality of this categorical variable.

Average asset age in years This predictor was calculated as accumulated depreciation/depreciation
expenses. Data on accumulated depreciation and depreciation expenses were taken from the
Bloomberg Terminal. Where one of these variables was not available, average asset age was not
calculated.



Table 3: Feature selection supported by economic theory (Continued)

Question Leading questions Explanatory Predictor variable Source of
number (economic perspective) feature data
Voluntary Whether an emissions Bloomberg
climate target has been set; Terminal
initiatives Whether an internal
price of carbon is set
What are the internal Climate change Climate change policy; Bloomberg
4 pressures to internalize management in Highest level at which  Terminal
(mitigate) emissions? the company climate change is man-
aged
Influence or Percent of women on Bloomberg
characteristics of  the board Terminal
the board of
directors
Company Global subregion Bloomberg
location according to country Terminal;
of domicile; Global United
subregion according Nations
country of risk; Paris Treaty
signatory according to  Collection
country of domicile; Deposi-
Paris signatory tary
according to country
of risk
What are the external
5 pressures to njnte‘rnallfe Multi- Percent of revenue Bloomberg
(mitigate) emissions? nationality from foreign sources ~ Terminal
Presence of Presence of carbon tax ~ Climate
carbon in country of domicile; Change
regulations Presence of carbon tax Laws of
in country of risk; the World
Presence of emissions Database

trading scheme in
country of domicile;
Presence of emissions
trading scheme in
country of risk




Percent of revenue from foreign sources In cases where the percent was reported as >100, this
was adjusted to 100%.

Whether an emissions target has been set This field was denoted as ‘yes’ or ‘no’ based on
whether there was an emissions target reported in any of the fiscal years. Two fields in the Bloomberg
terminal indicate whether an emissions target is set: one is based on CDP reporting, and the other is
derived by Bloomberg.

Internal price of carbon This field denotes ‘yes’, or ‘no’, or in cases where nothing is reported in
Bloomberg, we denoted the field as ‘unknown’. This data was converted to an ordinal scale, ordered
as: no (1), unknown (2), yes (3).

A.3 Data Pre-processing

Outliers Following initial data collection, we removed the 1st and 99th percentiles of the target
variable data (Scope 1 emissions). For outliers in the feature data, we removed outliers manually
using boxplot visualizations. We identified and removed outliers that appeared several orders of
magnitude outside of the 25-75 percentile box and appeared isolated. However, if many data points
appeared outside of the 25-75 percentile range, but were not isolated, we did not remove these. We
endeavored to retain as much real data as possible.

Logarithmic transformations and scaling Following the approach of Serafeim and Caicedo (2022)
and Nguyen et al. (2021), we applied a natural logarithmic transformation such that 2z’ = log(2)
on the target variable (Scope 1 emissions) and certain numerical predictor variables (GPPE, energy
consumption, number of employees, asset age). We scaled these predictive variables up 1 so that the
zeros in the dataset are handled prior to the logarithmic transformation. For free cash flow (FCF), cash
from operations (CFO), and capital expenditure (CAPEX), we applied a logarithmic transformation
such that z’ = log(z 4+ | min(z)|) to handle the negative values in these variables. This scales the
dataset upwards by the absolute of the minimum value. Also following the approach of Serafeim
and Caicedo (2022), we did not apply logarithmic transformations on variables representing ratios
or percentages. These include cash flow per share (CFPS), return on assets (ROA), return on equity
(ROE), percent revenue from foreign sources, percent women on the board, and EBITDA margin.

Missing data We then imputed missing values for all numerical predictor variables (EBITDA
margin, ROA, ROE, logRevenue, 10gGPPE, logCAPEX, logEnergyConsumption, logEmployees,
logFCF, logCFO, CFPS, logAssetAge, Percent of women on the board, Percent of revenue from
foreign sources) by using the k-nearest neighbors algorithm. We excluded the target variable in the
imputation methodology, Scope 1 emissions, as we assume that this data would not be typically
available for all companies. Figure 2 displays the root mean squared errors (RMSE) of this model
with respect to different values of k (in the range of 1 to 39). We chose k& = 26 to impute the missing
data, as this resulted in the lowest error (equal to 1.35).

A4 Figures



g Target Variable
« Scope 1 emissions
2018 -20
=Predictor Variables
* Economic theory
* Prior studies
= fosallability of data
= Data sources:
= Bloomberg Terminal
= UN Treaty Collection
Depositary
= Climate Change Laws
database

Data Collection &
Feature Selection

(#Tree-based zlgorithms A
= Cathoost
= Adaboost
= NGB
* Random forest

*‘ Pre-processing

* LightGEM
= Optimizing hyper-parameters
* Twia rounds of model

s Outtlier remaval

= Logarithmic
transformations & scaling
= Imputing missing values
using k-nearest neighbors

building: second round based
on SHAP >0 from first round

Model building

Figure 1: Overview of the methodological approach

Model & variable
evaluation

= Mean absolute error

= hean absolute percentage
error

= Adjusted R?
= floot mean sguared error

= Feature importance and
\ SHAP values

1324 @
\
]
I
i
L]
L
142 | '1.
|
g T
: ¢ Tee
£
2 140 ®a
: A
£ ‘.,‘ Y
3 &
* 138 o® »e
LY al!
.
‘J \_. ‘r.‘ ! ||".
i . rl
L 0% 8¢ e ¥
0 5 10 15 20 25 W I 10
K

Figure 2: RMSE for different k values

10



lognergyConsumption |, - 5
egcrre |G -+
Industry_Financials - + 22
Subregion - Country of Risk_Eastern Asia - +0.16
lngcarex [ o1
industry_Utilities [ 015
legRevenue - +0.13
Industry_Technology - +0:12
logEmployees - +0.12
Industry_Industrials - +0.11
Industry_Enerngy - +0.11
Industry_Real Estate - #0.1
EBITDA margin [JJJj +01
logrcr [ +0.08
cres [ +0.08
Industry_Basic Materials . +0.048
Industry_Telecommunications . +0.07
Percent foreign revenue . +0.07

lagAssetage . +0.06

Sum of 46 other features _ +0.65

0.0 0.2 0.4 0.6 0.8 10 1.2 1.4 15
mean{|SHAP value|}

Figure 3: Top 20 important features in prediction of Scope 1 corporate emissions from XGBoost
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Figure 4: The bee swarm plot for the top 20 important features in prediction of Scope 1 corporate
emissions from XGBoost
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