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Abstract

Measuring and attributing greenhouse gas (GHG) emissions remains a challenging
problem as the world strives towards meeting emissions reductions targets. As
a significant portion of total global emissions, the road transportation sector rep-
resents an enormous challenge for estimating and tracking emissions at a global
scale. To meet this challenge, we have developed a hybrid approach for estimating
road transportation emissions that combines the strengths of machine learning
and satellite imagery with localized emissions factors data to create an accurate,
globally scalable, and easily configurable GHG monitoring framework.

1 Introduction

Transportation contributed 27% of anthropogenic greenhouse gas (GHG) emissions in the U.S. for
2020, higher than any other sector, and 12.6% of all global GHG emissions in 2019 [1}|2]. The primary
source of transportation sector emissions are on-road vehicles, accounting for approximately 74% of
global transportation emissions in 2018 [3[]. Quantifying the distribution of on-road transportation
emissions and creating timely emissions inventories are vital to identify trends, track mitigation
efforts, and inform policy decisions.

Previous efforts have developed detailed bottom-up on-road emission inventories for the U.S. [4, 5],
but do not easily extend globally due to the reliance on vehicle traffic and road data that is not always
readily available. EDGAR [6]] provides a global inventory for transportation that uses road density
as a proxy to spatially distribute emissions. However, some emission estimates for urban centers in
EDGAR deviated from other bottom-up inventories [4]] by 500%, indicating that road density is not
a sufficient proxy for global high-resolution inventories. Carbon Monitor [7]] is a global emissions
inventory that utilizes a variety of activity data to estimate daily GHG emissions, however the reliance
on proprietary traffic data in the ground transportation sector limits the ability to extend to locations
where this data is not available. Other methods have used machine learning (ML) to directly predict
emissions, but their ability to generalize globally is unclear [8}9].

We propose an emissions estimation method that is globally accurate while using openly available
input data. It combines remote sensing, geospatial data, and ML with traditional, “bottom-up"
emissions inventories that directly incorporate region-specific vehicle fleet mix, fuel efficiency, and
other emissions factors (EF) data. This approach, illustrated in Figure[I] is composed of ML models
to predict road transportation activity and an EF pipeline that translates activity to emissions in
a localized fashion. These two independent parts afford continuous improvement as newer data
become available. Our contribution is a method that uses ML-predicted road activity along with
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Figure 1: System architecture for our hybrid emissions estimation model.

region-specific emissions factors data to create up-to-date and more accurate global on-road GHG
emissions estimates.

2 Data & Methods

We formulate the road activity prediction task as a regression problem. We train models to predict
average annual daily traffic (AADT), or the number of vehicles traveling on a given road segment per
day, on average over an entire year. We use ground truth data from the U.S. Highway Performance
Monitoring System Average Annual Daily Traffic (AADT) data set from 2017 [[10]. This AADT
data is recorded using road-side devices, and is typically only recorded on major highways and
arterial (collector) roads. Models trained in the U.S. are then run over both U.S. and global cities for
evaluation.

OpenStreetMap (OSM) [11]] road network data is used as input to our models and for associating
predicted AADT values with their corresponding physical road segment. While OSM can contain
inconsistencies and is not complete, its open access and global availability make it suitable for this
work.

Convolutional Neural Networks Semantic segmentation convolutional neural networks (CNN’s)
were trained to predict AADT, using visual RGB satellite imagery and road network data. Separate
models were trained using two sources of imagery: Sentinel-2 Level-2A visual RGB at 10 m x 10 m
resolution [12f], and Planet Labs PlanetScope mosaics at ~3 m resolution [[13]. OSM data is rasterized
for the corresponding extent of an input visual image, where each road type (highway, secondary,
local) is rasterized independently, and the resulting raster channels are concatenated together to form
a three channel image (see Appendix [A]for associated OSM tags for each road type). This image
is combined with the visual image to form a six channel image that is fed to the CNN to predict
AADT on a per-pixel basis. We primarily use MANet-based architectures [14f] for our segmentation
models, with EfficientNet [15] backbones (see Appendix [B]for full model descriptions). All AADT
predictions for a given road segment are averaged to produce a single AADT value for every road
within the current geographic extent of the input data.

Graph Neural Networks We have also trained graph neural networks (GNNs) [16] to predict
AADT. Road networks inherently take the form of a graph structure, and a graph neural network
(GNN) can capture road activity and feature dependencies across a range of scales more easily than
the image-based CNN segmentation models. GNNs can easily leverage various features assigned to
nodes and efficiently reason over the full road network graph to provide more robust estimates of
on-road activity. A number of road features are derived from OSM for model input, including: road
length, road type, number of lanes, and the directional angle between roads. The graph attention
network v2 (GATV2) [17] architecture is used as it allows for both edge and node input features, and
is set up to predict log-AADT values. Further mogel details can be found in Appendix [B]



Model Ensembling To create a more robust and predictive AADT estimation model, ensembling is
performed using the CNN and GNN models. Model AADT predictions per road segment are averaged
before being input to the emissions factors pipeline. This capability can be easily extended in the
future to experiment with different model architectures and perform further analysis of inter-model
variance. An example ensemble AADT output can be seen in Figure 2]
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Figure 2: Example ensembled AADT predictions for the greater Washington, D.C. area. AADT units
are vehicles per day. Map data from OpenStreetMap [@]

Activity to Emissions AADT predictions are assigned to their corresponding road segment based
on the known geographic location of the underlying road network. Emissions factors are computed
a priori from a database of road and vehicle-related data for a specific region, assigning EF values
to each type of road in a city. Estimated AADT is multiplied by 365 and converted to total annual
vehicle kilometers traveled (VKT) using the known length of each road segment, and then multiplied
by the corresponding EF for each road type. This process is repeated and summed over all road
segments in a city to calculate the final, total annual GHG emissions estimates for that city (see
Appendix [C|for more information). To date, our hybrid emissions estimation pipeline has been run
on a prioritized set of 500 global cities (see Appendix [D)).

3 Results & Discussion

U.S. Activity Prediction We evaluate each ML model on a hold out test set of U.S. cities, using input
data from 2017 to align with the timespan of our ground truth AADT data. We compute the following
metrics on a per road basis: root mean squared error (RMSE), mean absolute percentage error
(MAPE), mean percentage error (MPE), and Pearson’s p (see Appendix [E]for definitions). Comparing
metrics on a per-road basis enables a fair comparison between the image-based convolutional neural
network (CNN) models and the graph-based GNN models, as can be seen in Table[I} Of note is the
lower error metrics for the CNN models, but the stronger correlation of the GNN models. This points
to the importance of model ensembling to create a more robust activity prediction.

International Activity Prediction To estimate the ability of our models to generalize outside of
the U.S.-based training set, we have run an ensemble of the S2+OSM CNN and GNN OSM models
on 500 global cities, using input data from 2021. Several international AADT datasets are used for
evaluation: 26 cities in the United Kingdom (U.K.) for 2018-2020 (U.K. 26, see Appendix [F) [18]l,
Buenos Aires, Argentina , and Paris, France . Per-road AADT error metrics between our



Table 1: Comparison of activity prediction models trained with varying inputs and architectures (see
AppendixE]for a full description of each model). RMSE is in units of vehicles per day.

Method RMSE MAPE MPE Pearson’s p
S2+0OSM 4823.6 1163% -39.3% 0.58
S2+0OSM Ensemble 52495 1023% -71.74% 0.58
Planet+OSM 33299 1599% 41.01% 0.60
GNN OSM 4470.0 137.6% 103.3% 0.87
GNN OSM+GHSL 43849 1433% 110.6% 0.87
GNN OSM+CNN 44153 135.0% 99.27% 0.88
GNN OSM Ensemble 4307.3 1423% 113.0% 0.88

ML estimates and these datasets are shown in Table|2] Error percentages are generally on par with
performance in the U.S., showing the ability of our models to generalize globally.

Table 2: Evaluation of ensembled model output with international AADT.

Region RMSE MAPE MPE Pearson’s p
U.K. 26 (2018) 3804.6 119.5% 49.2% 0.69
U.K. 26 (2019) 31772 1309% 63.0% 0.73
U.K. 26 (2020) 34470 84.7%  20.6% 0.69
Buenos Aires (2017) 87502 743% 71.8% 0.66
Paris (2021) 94679 963% 20.4% 0.79

Emissions Validation We have performed several comparisons of our road transportation emissions
estimates against other emissions inventories for initial validation, both within the US and globally. A
set of 14 hold out cities in the US were selected for validation with three other emissions inventories:
Google Environmental Insights Explorer (EIE) [21]], Database of Road Transportation Emissions
(DARTE) [22]], and Vulcan v3.0 [5]. Both our CNN and GNN-derived emissions estimates are
strongly correlated with other inventory values for every city, with mean Pearson p values of 0.97
(CNN) and 0.98 (GNN). We also compare our emissions estimates for 500 of the largest global cities
to EDGAR [6] and Carbon Monitor [[7]. We found strong correlation with both inventories, with
Pearson p values of 0.74 and 0.87, respectively, showing the high global accuracy of our method.
Further emissions validation details can be found in Appendix [G|and [H]

4 Conclusion

We have presented a hybrid road transportation emissions estimation method that is accurate, scalable,
and easy to update. The ability to calculate emissions per road segment can be further refined to reach
an unprecedented level of detail and global coverage. Where available, the integration of real-time
traffic data would increase the temporal resolution and accuracy of our models. We also plan to carry
out further analysis of our emissions estimates with other inventories to identify the main causes
of discrepancies. As well, we aim to explore open-sourcing our emissions factors schema such
that governments and other entities can contribute more up-to-date and accurate EF data to further
improve our estimates. This type of actionable emissions monitoring data will be critical to ensuring
we meet global emissions reduction targets and may inspire new ways of mitigating the effects of
climate change.
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A OpenStreetMap Road Type Mapping

Table 3: Mapping of the three road types used in our emissions calclution to their corresponding
OpenStreetMap [11] tags.

Road Class  OpenStreetMap Tags

Highway motorway, motorway_link, trunk, trunk_link
Arterial primary, primary_link, secondary, secondary_link
Local tertiary, tertiary_link, residential, living_street, unclassified

B Machine Learning Model Descriptions

S2+OSM  Our baseline architecture consists of an MANet semantic segmentation model [[14] with
an EfficientNet-b3 backbone [15]], trained using a per-pixel mean squared error (MSE) loss. Models
are trained until convergence, measured using the validation loss. We select the model with the lowest
validation loss for evaluation.

S2+OSM Ensemble The Sentinel-2 and OSM ensemble uses three different backbone models:
EfficientNet-b3 [15]], ResNet-34, and ResNet-101 [23]]. Models were trained using the same six
channel RGB + OSM input images as used in the S2+OSM model. Initial training showed improved
performance from averaging the logits of each of these networks instead of the predictions, and all
models were trained using MSE loss.
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Planet+OSM The Planet and OSM model was trained using the same architecture, backbone, and
stopping criteria as the S2+OSM model. The input was a six channel image consisting of RGB
PlanetScope imagery and rasterized OSM road data. The Planet+OSM model was also used to
explore the importance of the road versus off-road pixels. This was accomplished by separating
the loss terms using the OSM data. The loss terms for the road pixels or off-road pixel term were
multiplied by a factor of three. The results in Table ] show that RMSE is decreased when the road
pixel loss term is weighted higher, but an increase in MPE and MAPE suggesting off-road pixels are
being predicted incorrectly.

Table 4: Evaluation of Planet+OSM models trained with various loss functions.

Loss Modification RMSE MAPE MPE Pearson’s p
Standard MSE 33299 159.9% 41.01% 0.60
Weight Off Road Loss 34944  169.7% 43.93% 0.58
Weight Road Loss 32433 1751% 62.12% 0.60

GNN OSM The GNN OSM models use a GATv2 network architecture with 14 layers, 2 attention
heads, and 64 hidden channels. The OSM road network is initially represented as a multi-digraph,
with each edge representing a directional road segment and nodes representing intersections. Road
length, number of lanes, road type (highway, arterial or local) and link road indication (used for road
segments such as sliproads and ramps) are used as features for the road segments. The road network
is then converted to a line graph, inverting the graph’s nodes and edges. Two additional features are
computed for the edges connecting different road segments, representing the dot product between the
segments’ unit vectors at the point of intersection and the dot product of the segments’ unit vectors
for the overall direction of the segment.

As AADT values can span many orders of magnitude, the GNN model is trained to predict log AADT
values. The loss function used to train the GNN model has two parts; the first is an L1 loss on
estimated log AADT values when AADT ground truth is available. However, AADT ground truth
annotations are fairly sparse (typically representing single digit percentages of the road network), so
an additional consistency loss is added. The consistency loss is averaged over all the road intersections,
and is calculated as a function of the total AADT values into and out of each intersection:
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GNN OSM+GHSL The GNN OSM+GHSL model uses additional features derived from the GHSL
BUILT-S [24] and GHSL POP [25]] datasets. The GHSL BUILT-S dataset is a global raster dataset
that provides a measure of how much of the Earth surface is built-up, measured in square meters per
grid cell. The GHSL POP dataset is a global raster dataset that provides population density estimates.
The GHSL POP dataset is converted to an estimated vehicle density by multiplying the population
density by vehicles per-capita statistics for US states [26] or countries [27]]. The rasters are sampled
every 100m along each road segment and averaged to provide two additional features for each road
segment.

GNN OSM+CNN The GNN OSM+CNN model uses additional features extracted from the trained
S2+0OSM model. The S2+OSM model is run over the Sentinel-2 imagery for each city, and the 16
features from the penultimate layer of the model are sampled at the center pixel of each road segment.

GNN Ensemble The GNN ensemble is a simple average of AADT estimates from five different
GNN OSM models of varying model depths, ranging from 14 to 20 layers.

C Emissions Calculation Details

Predicted road activity data (AADT) is used as the basis for our emissions calculation. We derive a
city-specific emissions factor for each supported road type (highway, arterial, and local), based on
several related factors: vehicle fleet mix, fuel types, fuel efficiencies, and GHG emissions factors



(EFs). When combined appropriately, these values can be converted to an emissions factor per road
type in units of tonnes CO; per vehicle kilometer traveled (VKT). Then, AADT predictions for each
road segment are multiplied by the length of that road segment to derive the estimated VKT for an
entire year on that road. Multiplying the VKT activity by the EF for this road type provides the
estimated emissions for this road. This process is repeated for all road segments under consideration

within a city’s bounds, as depicted in Figure[3]
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Figure 3: Emissions calculation overview, from ML-predicted AADT to emissions estimate for an
entire city.

Data collection for each of these EF-related variables across 500 cities is a significant undertaking.
The initial version of estimated emissions factors focused on collecting data at the country level for
the 86 countries in which the top 500 cities are located. Sources for each type of data required for the
emissions factor calculation are shown in Table

Table 5: Data sources for variables used in emissions calculation.

Data Type Source(s)

Road Segment Type OpenStreetMap [11]]

Vehicle Fleet Mix Various, available upon request
Fuel Type CURB [[28]]

Fuel Efficiencies CURB [28]

GHG Emissions Factors US EPA GHG Emissions Factors Hub [29]

D Top 500 Cities Selection

To prioritize the set of 500 global cities, we utilized the European Union Joint Research Center
Global Human Settlement Layer Urban Centers Database (GHSL-UCDB) dataset [30]] for a globally
consistent representation of city extent. This database contains the geographic bounds and other
metadata for approximately 13,000 cities worldwide, and utilizes a definition of city/urban center
based on population density and built up area. Specifically, an urban center was defined as “the
spatially-generalized high-density clusters of contiguous grid cells of 1 km? with a density of at least
1,500 inhabitants per km? of land surface or at least 50% built-up surface share per km? of land
surface, and a minimum population of 50,000" [30]]. Due to this definition, city geometries in UCDB
often have significantly different shapes and sizes as compared to official administrative bounds, e.g.,
from OSM [11]] or Global Administrative Areas (GADM) [31]. We note that these differences are
likely a main cause of discrepancies between our emissions estimates and other inventories.

UCDB spatially combines urban centers with a variety of metadata related to geography, socio-
economic, environment, disaster risk, and sustainable development goals. This metadata includes
EDGAR V5.0 [|6]] emissions estimates within urban center bounds for 1975, 1990, 2000, and 2015.
We used the 2015 transport sector total CO2 emissions from non-short-cycle organic fuels (fossil



fuels, CO2_excl_short-cycle_org_C in EDGAR) to sort and select the largest 500 cities for
this work. The distribution of the selected cities across continents is shown below in Table[@

Table 6: Regional distribution of the 500 global cities selected for emissions estimation.

Region Proportion of Top 500 Cities
Asia 42.6%

Europe 18.8%

North America 17.8%

Latin America and the Caribbean 11.2%

Africa 8.2%

Oceania 1.4%
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These metrics are used to analyze both predicted AADT and city-level emissions. In each equation,
n represents the number of roads/cities under consideration, ¢ represents the road/city index, P
represents the predicted AADT/predicted emissions from our model, and GT represents the ground-
truth AADT/emissions value.



F List of U.K. 26 Cities

Table 7: List of U.K. 26 cities used for AADT evaluation.

London Edinburgh
Manchester Huddersfield
Birmingham Southampton
Leeds Reading
Liverpool Southend-on-Sea
Glasgow Warrington
Newcastle upon Tyne  Runcorn
Sheffield Wishaw
Nottingham Blackburn
Bristol Atherton
Portsmouth Crawley
Middlesbrough Slough
Coventry Coatbridge

G U.S. Emissions Validation

Google Environmental Insights Explorer (EIE) [21] leverages trip data in combination with emissions
factors data to provide emissions estimates for multiple modes of transportation in 42,000+ cities
worldwide. We utilize the publicly available 2018 EIE data in the US for our comparison. DARTE
[22] uses reported vehicular traffic data combined with Census TIGER [32] road network information
to estimate regional on-road emissions and disaggregate them among mapped road networks. We
compare our estimates to both DARTE 2015 and 2017 data. Vulcan [5] is a national-scale, multi-
sectoral, hourly inventory from 2010-2015 with a resolution of 1 km?. Vulcan transportation emissions
are based on EPA county-level on-road emissions estimates, further downscaled using data from the
Federal Highway Administration. We select Vulcan data from 2015 for comparison.

Due to the fact that our ground truth AADT data and satellite imagery for this set of cities is from
2017, data from the other emissions inventories were selected from years as close to 2017 as possible.
We use the geographic bounds available in the EIE data to retrieve satellite imagery and road network
data within each city’s bounds. After predicting AADT with our models and associating AADT
with each road segment, road geometries are cropped to the city bounds to create an appropriate
estimate of VKT and emissions for each road. Corresponding emissions estimates from the DARTE
and Vulcan raster products are also selected using each city’s EIE bounds.

Table 8: Emissions validation metrics for US cities. MAE and Mean Error are in units of tonnes COs,
and p is Pearson’s p.

CNN
RMSE Mean Error MAPE p

GNN
RMSE Mean Error MAPE  p

Emissions Dataset

EIE v1_2018 544,225 407,997 T77.3% 0.94 3,706,827 3,706,827 321.5% 0.95
EIE_v2_2018 1,180,437 -1,153,065 36.1% 0.94 2,223,303 2,145,764 71.3% 0.96
DARTE_2015 2,606,389 -2,606,389 53.6% 0.98 708,514 692,440 19.8% 0.99
DARTE_2017 3,505,472 -3,505,472 59.5% 0.98 875,254 -206,642 17.2% 0.99
VULCAN_lo_2015 912,134 912,134 124.8% 0.98 4,210,964 4,210,964 473.2% 0.99
VULCAN_mn_2015 761,213 759,672 93.3% 0.98 4,058,502 4,058,502 391.8% 0.99

VULCAN_hi_2015 617,740 607,210  71% 0.98 3,906,040 3,906,040 330.7% 0.99

Several variants of each third party inventory are examined. Google EIE data categorizes trips into
three categories: in-boundary, inbound, and outbound. Trips are categorized according to their start
and end locations, with in-boundary containing trips that both start and end within city bounds,
inbound starting outside and ending inside city bounds, and outbound starting inside and ending
outside city bounds. We compare against just in-boundary emissions (EIE_v1_2018), and in-boundary
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plus 50% inbound and 50% outbound emissions (EIE_v2_2018). For DARTE, we compare against
emissions estimates for both 2015 (DARTE_2015) and 2017 (DARTE_2017). Vulcan contains
three emissions estimates: the lower 95% confidence interval (VULCAN_lo_2015), mean estimate
(VULCAN_mn_2015), and the upper 95% confidence interval (VULCAN_hi_2015).
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Figure 4: Distribution of emissions estimates for each US city. Emissions estimates based on our
S2+OSM CNN are marked with red dots, and estimates based on our GNN OSM model outputs are
marked with blue X’s.

H Global Emissions Validation

Initial validation was performed for our global emissions estimates, where we compare against both
EDGAR [6] and Carbon Monitor city-level data for 2018-2020 [[7]. EDGAR 2015 data is retrieved
from the Global Human Settlement Layer - Urban Centres Database (GHSL-UCDB) dataset [30]]
from which we have selected our set of 500 global cities, and we acknowledge that more recent
EDGAR data from 2018 should be used in future validation experiments. Carbon Monitor is a recent
emissions inventory that utilizes a variety of activity data sources to estimate emissions in multiple
sectors on a daily basis. In addition to country level data, Carbon Monitor has released near real-time
emissions estimates for 52 cities globally. This city-level data is used in our analysis, for 50 total
cities that overlap the global set of 500 cities for which we have produced emissions estimates.

Validation metrics for both dataset comparisons shown in Table[9] The resulting comparison for all
500 cities against EDGAR can be seen in Figure[5] While the Pearson p value of 0.74 indicates decent
correlation, the wide variance of the differences is noteworthy and warrants further investigation. The
sharp “wall" on the left portion of the plot is caused by the fact that our 500 cities were selected based
on thresholded EDGAR 2015 estimates.
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Table 9: Global emissions validation metrics for our estimates compared with EDGAR I]EI] and
Carbon Monitor []7[] data. MAE and Mean Error are in units of tonnes COs.

Emissions Dataset ~ # of Cities MAE  MAPE Mean Error  MPE Pearson’s p

EDGAR 2015 500 1,158,740 68.80% 248,624 23.60% 0.74
Carbon Monitor 2019 50 2,857,690 72.40% -844,634 44.40% 0.87
Carbon Monitor 2020 50 2,634,598 83.20% -317,283 55.70% 0.86
Carbon Monitor 2021 50 2,795,294 73.50% -781,053 42.40% 0.87

Pearson R = 0.744 (p=0.000)

Spearman R = 0.712 (p=0.000) .
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Figure 5: Our emissions estimates for 500 global cities compared with EDGAR 2015 data. Note that
axes are in log scale.

The results of the comparison with the 50 overlapping Carbon Monitor cities for 2021 is shown in
Figure[6] There is generally good alignment between the two sets of emissions, with some larger
differences in France (Nice, Lyon, Marseille), South America (Bogota, Sdo Paulo), Russia (Saint
Petersburg, Moscow), and India (Mumbai, Delhi). We also note the larger percentage errors for 2020
in Table O]as compared to 2019 and 2021, likely due to COVID-19 lockdown effects.
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Figure 6: Our emissions estimates for 50 global cities compared with Carbon Monitor 2021 data.
Note that axes are in log scale.
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