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Deep Learning for Global Wildfire Forecasting
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Climate Change Aggravates Fire Weather

e Climate change aggravates fire weather

e Wildfire regimes are quickly changing

e Firetoexpandto boreal regions and
evergreen forests

It is crucial to improve our understanding of
wildfires in the Earth System and enhance our
ability to anticipate them.

Athens wildfires 2021 look from the city.
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Seasfire: Earth is a complex interconnected system

Fire Drivers: Any variable contributing to wildfires.

Teleconnections are long-range spatio-temporal connections in the
earth system. “Arctic oscillation anomalies linked to extreme wildfires
in Siberia” Kim et al. (2020)

Motivation: Use Machine learning to capture the spatio-temporal
extent, interaction and influence of Fire Drivers to forecast them in
advance for various stakeholders.

Why Machine Learning?

(a) Non-Linear Interactions: Hard to capture relationships on seasonal
and sub-seasonal scales.

(b) Large Scale Datasets: More than 100 GB

(c) Limits of the Physical models: fail to understand the combined
dynamics of fire drivers and no no physical models exist that capture
these teleconnections well.

Source: Statistical physics approaches to the complex Earth system
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https://www.researchgate.net/publication/346073024_Statistical_physics_approaches_to_the_complex_Earth_system

SeasFire DataCube: Variable types and their sources
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Seasfire: Resolution

Temporal Resolution

2001 to 2021

Day1l #Day2 | Day3 | Day4 | Day5 @ Dayé | Day7
8-Day Weekly Resolution
W1 W2 W3 W4 W5 W6 W44
Forty Six “8-Day Weeks” in each year
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Tackling Climate Change with Machine Learning

Spatial Resolution

Day 8
w45 W46
Earth System Deep Learning for

Seasonal Fire Forecasting in Europe

(0.25,0) (0.25,0.25)
Single Grid Cell
(0,0) (0,0.25)
Global, 0.25 x 0.25 Degree
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Seasfire: Summary of the Datacube

Open-access datacube in a cloud-friendly format

Feature Value
Spatial Coverage Global
Temporal Coverage 2001 to 2021
Spatial Resolution 0.25degx 0.25 deg
Temporal Resolution 8 day- weekly
Input Variables ~30
Target Variables 5
Tutorial Link https://github.com/SeasFire/seasfire-datacube
Zenodo Link https://zenodo.org/record/7108392
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https://github.com/SeasFire/seasfire-datacube
https://zenodo.org/record/7108392

Wildfire Forecasting as a Segmentation Task

e Input: 8 firedriver variables
attimet.

Stacked 128x128 patches

e Target: Presence of burned area
at time t+h

(h=8, 16, 32, 64 days)

e Aseparate UNET++ model is
trained for each h

e Data split temporally:

Training (2001 to 2017)

Land Surface Surface Solar
Temperature NDVI Relative Humidity Radiation
[ = 1 =
-

.

Sea Surface Temperature Total
T bk Preci

Vapour Pressure
ficit

Burned
(0,1)

Target Y p:128 x 128

h = 8,16, 32,64 days

Prediction gﬁ
Validation (2018) —> UNETH 4’128 o [
. X c:‘ - b
Testing (2019) :
CE Loss(UNET, , (X,), Y1)
ube
patac Input X, : 8 x 128 x 128
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Results - Quantitative (1)

e AreaUnder the Precision Recall Curve and F1 more fit for imbalanced datasets
e Models’ predictive skill is better than mean seasonal cycle as
e Burned area patterns can be skillfully predicted for even 2 months in advance!

Table 1: AUPRC, F1-score for the UNET++ model forecasting with different lead times on the test
dataset (year 2019). Baseline values for the weekly mean seasonal cycle also reported.

Lead time (days) AUPRC Fl-score @AUROC

8 0.550 0.507 0.976

16 0.547 0.489 0.975

LN 32 0543 0473 0973

64 0.526 0.424 0.971

Weekly Mean Seasonal Cycle - 0.429 - 0.918
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Captured change of fire activity in eastern
Europe and south-east Asia, shift from the

ReS u I tS - Qu a I ita t ive ( 2) southern to the northern African savanna.

Lead time: 64 day

Lead time: 8 days Lead time: 32 days

Predictions

0.0
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Summary and Links

« SeasFire Cube contains a complete set of global variables for
modeling wildfires.

. Burned area pattern forecasting can be defined as a segmentation
task providing skillful forecasting.

« Future work on the SeasFire cube aims to enhance our understanding
and ability to anticipate wildfires globally.

Links

SeasFire Project: https://seasfire.hua.gr
Preprint Paper: https://arxiv.org/abs/2211.00534
SeasFire Cube: https://zenodo.org/record/7108392

Tutorials: https://github.com/SeasFire/seasfire-datacube
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