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Abstract

Droughts are pervasive hydrometeorological phenomena and global hazards, whose
frequency and intensity are expected to increase in the context of climate change.
Drought monitoring is of paramount relevance. Here we propose a hybrid model for
drought detection that integrates both climatic indices and data-driven models in a
hybrid deep learning approach. We exploit time-series of multi-scale Standardized
Precipitation Evapotranspiration Index together with precipitation and temperature
as inputs. We introduce a dual-branch recurrent neural network with convolutional
lateral connections for blending the data. Experimental and ablative results show
that the proposed system outperforms both the considered drought index and purely
data-driven deep learning models. Our results suggest the potential of hybrid
models for drought monitoring and open the door to synergistic systems that learn
from data and domain knowledge altogether.

1 Introduction

Droughts are one of the costliest natural disasters causing seriously destructive consequences on
the ecological environment, agricultural production, and socio-economic impacts [1]. With global
warming, the frequency of composite dry-heat events such as heatwaves and droughts has increased
significantly. In these circumstances, advanced monitoring techniques are urgently required to
effectively and rapidly detect droughts [2], as well as to ameliorate risk management [3].

Due to the complex physical, chemical, and biological processes involved in drought events, much
effort has been devoted to developing climate indices and (mostly mechanistic) analytical tools. In
general, drought indices have become standardized tools for objectively quantifying the characteristics
of these episodes in terms of intensity, magnitude, duration, and spatial extent. Three widely-used
indices are the Palmer Drought Severity Index (PDSI), which is based on a soil water balance equation
[4]; the Standardized Precipitation Index (SPI), which is based on a precipitation probabilistic model
[5]; and the Standardized Precipitation-Evapotranspiration Index (SPEI), which combines both
approaches [6]. The run theory deploys a bridge between climate indices and drought characteristics
analysis [7, 8]. Other indices based on comprehensive remote sensing data have been proposed, either
related to vegetation greenness, such as Normalized Difference Vegetation Index (NDVI), Vegetation
Condition Index (VCI), or to water-limitation principles, as the Precipitation Condition Index (PCI)
[9] and the Standardized Moisture Anomaly Index (SZI) [10].

Alternatively, data-driven models directly learn from historical drought records taking Essential
Climate Variables (ECVs) as inputs to estimate drought intensity [11]. Existing models include but
are not limited to k-nearest neighbors [12], artificial neural networks [13], support vector regression
[13] and random forest [14]. More recently, deep architectures have been successfully employed,
such as deep feed-forward neural networks [15], long short-term memory-based models [16], and
advanced convolutional neural networks [17].
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The integration of data-driven and physical models captures attention and promises a new generation
of models for the Earth Sciences [18]. The hybrid machine learning framework combines the
flexibility and representation capability of machine learning approaches with the consistency of
domain knowledge. Validated examples include precipitation forecasting [19], terrestrial evaporation
[20], cloud detection [21], and biophysical parameter [22]. In this paper, we propose a Hybrid
Recurrent Neural Network (HRNN) to synergistically combine deep learning models and climate
indices for the first time toward drought monitoring. Our experimental results show that our HRNN
outperforms both indices and data-driven models, supporting the potential of hybrid frameworks for
drought monitoring.

2 Data

Essential Climate Variables & Climate Indices First, we select total precipitation and air temper-
ature @2m, which are well-known ECVs correlated to droughts, from the re-gridded ERA5-Land
(0.083◦ × 0.083◦, 8 km2) data [23], covering the period from Jan 2003 to Dec 2018 with a temporal
resolution of 8 days. Second, SPEIs computed at different temporal resolutions (from 1 to 6 months)
are selected as the climate. SPEI measures drought severity by taking into account both intensity
and duration, and also allows us identifying their corresponding onset and offset times. Besides,
being based on a water balance equation and a precipitation probabilistic model, the index provides
complementary information to the raw ECVs data. Last but not least, it is a multi-scalar index that
enables the identification of different drought types. It should be noted that, for the sake of measuring
the implicit expert knowledge gathered in the formulation of the index, potential evapotranspiration
(PET) for the SPEIs is computed using an equation that only relies on the ECVs mentioned above
[24], despite more accurate methods are available for this estimation.

Drought Events & Dataset Splits The EM-DAT is a global database on natural disasters containing
information about the occurrence and effects of more than 21,000 disasters in the world, from 1900
to the present [25]. In this study, time-series data of six recorded drought cases in Russia, Italy, and
Afghanistan, from 2003 to 2018, are chosen. Two drought events are considered for each country,
over extended regions covering these three countries, during the study period, as can be seen in
Table A1. The training-validation-test data splits ensure that each subset contains one drought event
with no overlapping times between them (see Table 1).

Table 1: Training, validation, and test dataset splits for Russia, Italy, and Afghanistan regions
Training Validation Test

Russia Jan 2004−Jun 2010 Jul 2010−Dec 2011 Jan 2012−Dec 2013
Italy Jul 2012−Dec 2016 Mar 2011−Jun 2012 Jan 2017−Dec 2018
Afghanistan Jan 2003−Sep 2008 Oct 2008−Dec 2009 Jan 2010−Dec 2011

3 Methodology

Figure 1: Graphical illustration of the proposed HRNN model for drought monitoring. The number
after ‘@’ is the dimension of the output features. Batch Norm, Conv, and FC in lateral connections
(LC) represent batch normalization, 1D convolutional with a kernel size and a stride of λ, and fully
connected layers, respectively.
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Similar to [26], we tackle drought monitoring as a sequence binary classification task, i.e., for each
spatial location and a given time step, our models make use of the time series including the last
T = 24 steps (∼ 6 months, according to [24]) of the K = 2 ECVs considered (precipitation and
temperature) and blend the S = 6 time steps of the corresponding N = 6 SPEIs (computed from the
same ECVs), in order to compute a probability score in [0, 1] to assess the drought severity.

Hybrid Recurrent Neural Network The scheme of the proposed HRNN is shown in Fig. 1, with
lateral connections illustrated in detail on the right side. We integrate the physical knowledge in the
HRNN by casting the SPEIs as complementary input features. To extract discriminative information
about the droughts from both the ECVs and the SPEIs at different temporal resolutions, we design a
dual-branch RNN instead of a single-branch multi-layer perceptron (MLP) or a single-branch RNN,
with the aim of capturing their respective features at first. Then, inspired by [27], convolutional lateral
connections are included to blend the ECVs into the SPEIs along the temporal dimension. Note that
we consider the ECVs as supplementary to the SPEIs, instead of the opposite combination, since
SPEIs encompass more persistent information, as demonstrated in Fig. A1. Finally, latent features
are concatenated and fed into a fully connected layer with softmax activation to get the posterior
probability of drought yT .

Experimental Settings We mitigate the class imbalance (around 97% samples for non-drought event,
demonstrated in Fig. A2) following an under-sampling strategy. Besides, all ECVs are standardized
and truncated to the range [−3, 3]. We compare our HRNN to the SPEI-6 index, as well as to
MLP, RNN, concatenated MLP (CMLP), and dual-branch RNN (DRNN) models. Specifically, the
detection thresholds for the SPEI-6 are determined based on the best training F1-score. All models
are implemented using PyTorch [28] and their hyperparameters are listed in Table A2. The network
optimizer is set to Adam [29]. This setting is kept the same for three regions. Standard quantitative
metrics are adopted for evaluation purposes: Macro F1-score, Precision-Recall (PR-AUC), and the
Receiver Operating Characteristic AUC (ROC-AUC). The final test results are reported by averaging
the outputs of 10 independent runs.

4 Experimental Results

Quantitative Results ROC-AUC scores for the different models can be found in Table 2, achieving
the HRNN proposed the highest performance. AUC curves are depicted in Fig. 2. Other metrics are
included in Table A3 and Fig. A3, where a few exceptions can be observed. For example, DRNN
obtains a higher PR-AUC in Italy and CMLP achieves a higher F1 in Afghanistan; however, HRNN
performs better overall for the three regions.

Qualitative Results Detection signals through time by computing the average drought score for
all drought event spatial locations in each region are depicted in Fig. 3. We observe that HRNN
has lower false alarms without reducing true positive rates. Besides, HRNN is able to capture the
starting, ending, and duration of the drought events. We also noted that the predicted starting time is
usually earlier than the one recorded in the EM-DAT, suggesting the drought warning capability of
our approach. The monitoring maps and animations yielded by HRNN are shown in Fig. A4 and in
the HRNN GitHub repo. It can be noticed a sparse and changing distribution of probabilities, which
suggests the validity of the monitoring system and its potential for a severity analysis.

Ablation Study Training and validation loss curves are shown in Fig. A5 and show the importance
of adopting a proper early stopping criteria. Three variants of the HRNN based on different fusion
strategies, together with four variants of the SPEIs as input features are designed and used for
comparison. Their results are given in Table A4. HRNN combining convolutional lateral connections
with the last concatenation achieves the best results in Italy and Afghanistan, while no clear gain
can be observed in Russia. The results of the SPEIs§ are close to that of SPEIs, suggesting extended
ECVs historical records have less effect. Moreover, the results of SPEIs‡ are prominently inferior
to other variants, which indicates that the variable standardization is the most essential step when
computing the SPEIs.

Overall, these encouraging results demonstrate that HRNN is superior to the other models considered,
either index-based or data-driven, which encourages developing further alternative hybrid models for
drought monitoring.
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Table 2: ROC-AUC scores for the different models and the three regions considered in this study
SPEI 6 MLP RNN CMLP DRNN HRNN

Russia 0.740 0.711±0.002 0.764±0.009 0.702±0.006 0.717±0.008 0.778±0.006
Italy 0.797 0.871±0.001 0.895±0.009 0.917±0.011 0.935±0.007 0.937±0.009
Afghanistan 0.820 0.575±0.013 0.420±0.003 0.795±0.004 0.742±0.030 0.825±0.004

(a) Russia (b) Italy (c) Afghanistan

Figure 2: ROC Curves for the different models and the three regions considered in this study.

(a) Russia (b) Italy (c) Afghanistan

Figure 3: Detection signals through time for the different models and the three regions considered in
this study.

5 Conclusions and Future Work

We proposed a hybrid recurrent neural network which, to our knowledge, constitutes the first hybrid
machine learning model for drought monitoring. HRNN realizes the synergy between DL models
and climatic indices and achieves superior performance over several representative drought events.
An ablation study considering different fusion methods and indices demonstrated that convolutional
lateral connections are optimal and the variable standardization step is essential for the computation
of the SPEIs.

As future work, we plan to explore the fusion of SPEIs and ECVs within the inner loop of a RNN cell.
This may improve the latent representations obtained for drought detection. Apart from assimilating
knowledge through features, we also plan to explore the use of SPEIs for the regularization of DL
models, as well as to learn the indices parameterization via end-to-end optimization.
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Appendix

(a) Russia (b) Italy (c) Afghanistan

Figure A1: Time-lagged Spearman autocorrelation given input features (ECVs, SPEIs), averaged for
all spatial locations.

(a) Training (b) Validation (c) Test

Figure A2: Drought label distributions of the training, validation, and test dataset.

(a) Russia (b) Italy (c) Afghanistan

Figure A3: PR curves for the different models and the three regions considered in this study.

Table A1: Regions and drought events considered for the experiments
Geospatial coordinates (NSWE) Drought events

Russia 59.0◦N, 43.0◦S, 30.0◦W, 64.0◦E Apr.−Aug. 2010; June−Aug. 2012
Italy 48.0◦N, 35.0◦S, 6.0◦W, 19.0◦E June−Oct. 2012; July 2017
Afghanistan 38.0◦N, 32.0◦S, 63.0◦W, 70.0◦E Oct. 2008; Jan.−Aug. 2011
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2012/03/25 2012/05/04 2012/06/05 2012/06/21

2017/07/08 2017/07/24 2017/09/18 2017/10/12 2017/10/20

2011/04/03 2011/04/19 2011/05/29 2011/06/30 2011/08/25

Figure A4: Drought monitoring maps obtained by HRNN over Russia (top row), Italy (middle row),
and Afghanistan (bottom row), considered for the experiments. The subtitles are corresponding dates.

(a) Russia (b) Italy (c) Afghanistan

Figure A5: Loss curves obtained during the training stage of the HRNN proposed for the three regions
considered. The shaded area shows the standard deviation for 10 independent executions.

Table A2: Hyperparameters of the DL models considered in this study
MLP RNN CMLP DRNN HRNN

Activation ReLU Tanh ReLU Tanh Tanh
Batch Norm False False False False False (except in the LCs)
Dropout 0.5 0.5 0.5 0.5 0.5
Dual Branch False False False True True
Fusion Method - - Concat Concat LCs & Concat
Hidden Size 128 128 128 128 128
Including SPEIs False False True True True
Layer Number 4 3 4 3 3

Batch Size 4096 4096 4096 4096 4096
Early Stop Patience 5 5 5 5 5
Epoch 20 20 20 20 20
Learning Rate 0.001 0.001 0.001 0.001 0.001
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Table A3: Macro F1 and PR-AUC scores obtained for the different models and the three regions
considered in this study

SPEI 6 MLP RNN CMLP DRNN HRNN

1) Russia

Macro F1 0.131 0.105±0.005 0.156±0.009 0.137±0.005 0.167±0.038 0.230±0.015
PR-AUC 0.066 0.069±0.003 0.083±0.004 0.080±0.001 0.089±0.018 0.145±0.010

2) Italy

Macro F1 0.017 0.037±0.001 0.047±0.002 0.054±0.004 0.060±0.003 0.066±0.005
PR-AUC 0.015 0.018±0.000 0.023±0.005 0.030±0.005 0.043±0.006 0.041±0.009

3) Afghanistan

Macro F1 0.365 0.246±0.002 0.162±0.004 0.405±0.005 0.354±0.024 0.377±0.013
PR-AUC 0.307 0.184±0.002 0.121±0.001 0.315±0.003 0.287±0.016 0.348±0.002

Table A4: Ablation study based on different HRNN and SPEIs variants, considering the three regions
in this study

HRNN HRNN† HRNN‡ HRNN§ SPIs SPEIs† SPEIs‡ SPEIs§

1) Russia

Macro F1 0.230±0.015 0.240±0.014 0.242±0.010 0.215±0.020 0.158±0.023 0.213±0.027 0.098±0.028 0.233±0.020
PR-AUC 0.145±0.010 0.143±0.017 0.152±0.021 0.121±0.022 0.110±0.016 0.144±0.015 0.068±0.011 0.152±0.022
ROC-AUC 0.778±0.006 0.715±0.022 0.825±0.025 0.813±0.010 0.773±0.024 0.810±0.030 0.667±0.039 0.800±0.031

2) Italy

Macro F1 0.066±0.005 0.064±0.004 0.045±0.003 0.059±0.005 0.069±0.002 0.066±0.003 0.036±0.004 0.071±0.004
PR-AUC 0.041±0.009 0.038±0.005 0.050±0.005 0.044±0.011 0.049±0.006 0.047±0.008 0.020±0.003 0.053±0.014
ROC-AUC 0.937±0.009 0.932±0.007 0.944±0.005 0.938±0.005 0.938±0.006 0.938±0.008 0.862±0.013 0.940±0.008

3) Afghanistan

Macro F1 0.377±0.013 0.287±0.009 0.336±0.021 0.317±0.008 0.373±0.040 0.359±0.056 0.083±0.003 0.371±0.018
PR-AUC 0.348±0.002 0.285±0.002 0.265±0.011 0.263±0.005 0.402±0.037 0.327±0.034 0.128±0.002 0.364±0.007
ROC-AUC 0.825±0.004 0.771±0.002 0.716±0.020 0.703±0.013 0.823±0.037 0.795±0.045 0.445±0.004 0.807±0.010

HRNN variants: 1) HRNN without the last concatenation (HRNN†); 2) HRNN using reshaping
lateral connections (HRNN‡); 3) HRNN using sampling lateral connections (HRNN§). SPEIs
variants: 1) SPI index, based solely on precipitation; 2) SPEIs without latitude and month
information within the PET estimation (SPEIs†); 3) SPEIs without the variable standardization based
on probability distribution models, but instead using basic standardization (SPEIs‡); 4) SPEIs using
extended ECVs historical records (SPEIs§).
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