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Problem statement

lllegal, Unreported and Unregulated (IlUU) Fishing

* The resistance of many marine species to
climate change is compromised by overfishing,
which increases the vulnerability of marine
fisheries' production to ocean warming [1]

« 20% of wild-caught fish is either illegal or
unreported

« Economic damages up to $23 billion a year [2]
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Detecting illegal fishing . T

AIS [<€—» Computer

a Automatic Identification Signal [3] —
cc?nilgoa-ss

 Signal with information such as position,
speed, and general ship data

g Detecting ships in SAR imagery [4]

* Form of radar to create 2D images or 3D
reconstructions of objects or landscapes
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Goal

Trade-off inference time and performance

1. Efficiently determine if at least one ship @ TEE

is present in an SAR sub-image - i

least 1 ship?

model

» Fast classification model
- Statistical algorithm

2. Find the ships - a3 i
« Expensive detection model
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Fast classification with small CNN

1. Classify the sub-image (ship/no ship)
* MobileNetV2 [5] ~ 10 ms

2. Object detection on a sub-image that contains a ship
» Faster R-CNN [6] ~ 253 ms

I contains a ship if s < ¢clf

. I clfy _ — oclf
far(I,£7) = CNN(I) = s {I does not contain a ship  if sIf > ¢cif
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Correlation in presence of ships between

neighboring sub-images
1. Apply object detection on the black HEBR

sub-images HE EH B
2. Determine for the white sub-images if

detection will be applied based on the H BB

presence of ships in neighbouring sub-images

K I contains a ship L8P 3 i
LB, 17 ) = w;l; = s : L.
feorl I, Ky w, £°7) L L I I does not contain a ship  if s°°° < ¢
j<K ieN;

e Njis the set of neighbours that are j tiles away
e wjis the weight given to all neighboring tiles that are j tiles away
e 1iindicates whether neighbor i contains at least one ship or not




Results: Trade-off inference time vs performance

=
o

— e o LSSSDD dataset [7]
e Performance:

Classification-optimization
o Approximates baseline AP to 99.5%

o In 44% of the baseline time
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e Inference time:
Correlation + Classification-optimization

—— Random
| —— CLF

o
[N

Relative Average Precision

= renifhechan o Approximates baseline AP to 92.7%
orr Alpha
— CLF And Corr o In 25% of the baseline time
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