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Problem statement
Illegal, Unreported and Unregulated (IUU) Fishing

• The resistance of many marine species to 
climate change is compromised by overfishing, 
which increases the vulnerability of marine 
fisheries' production to ocean warming [1]

• 20% of wild-caught fish is either illegal or 
unreported 

• Economic damages up to $23 billion a year [2]
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Detecting illegal fishing

• Signal with information such as position, 
speed, and general ship data

Automatic Identification Signal [3]

• Form of radar to create 2D images or 3D 
reconstructions of objects or landscapes

Detecting ships in SAR imagery [4]



Goal
Trade-off inference time and performance

1. Efficiently determine if at least one ship 
is present in an SAR sub-image
• Fast classification model 
• Statistical algorithm

2. Find the ships
• Expensive detection model 
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Fast classification with small CNN

1. Classify the sub-image (ship/no ship) 
• MobileNetV2 [5]  ~ 10 ms

2. Object detection on a sub-image that contains a ship 
• Faster R-CNN [6] ~ 253 ms
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 Correlation in presence of ships between 
neighboring sub-images

● Nj is the set of neighbours that are j tiles away
● wj is the weight given to all neighboring tiles that are j tiles away
● 1i indicates whether neighbor i contains at least one ship or not

1. Apply object detection on the black 
sub-images

2. Determine for the white sub-images if 
detection will be applied based on the 
presence of ships in neighbouring sub-images

Alpha Checkers
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Results: Trade-off inference time vs performance

● LSSSDD dataset [7]
● Performance:       

Classification-optimization
○ Approximates baseline AP to 99.5% 
○ In 44% of the baseline time

● Inference time: 
Correlation + Classification-optimization

○ Approximates baseline AP to 92.7%
○ In 25% of the baseline time
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