Optimizing ship detection efficiency in SAR images
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Abstract

The detection and prevention of illegal fishing is critical to maintaining a healthy
and functional ecosystem. Recent research on ship detection in satellite imagery
has focused exclusively on performance improvements, disregarding detection
efficiency. However, the speed and compute cost of vessel detection are essential
for a timely intervention to prevent illegal fishing. Therefore, we investigated
optimization methods that lower detection time and cost with minimal performance
loss. We trained an object detection model based on a convolutional neural network
(CNN) using a dataset of satellite images. Then, we designed two efficiency
optimizations that can be applied to the base CNN or any other base model. The
optimizations consist of a fast, cheap classification model and a statistical algorithm.
The integration of the optimizations with the object detection model leads to a
trade-off between speed and performance. We studied the trade-off using metrics
that give different weight to execution time and performance. We show that by
using a classification model the average precision of the detection model can be
approximated to 99.5% in +44% of the time or to 92.7% in £25% of the time.

1 Introduction

Biodiversity conservation and climate change are significant and current global issues. A major
contemporary problem in biodiversity conservation is overfishing, which often results from Illegal,
Unreported and Unregulated (IUU) fishing. It is estimated that IUU fishing is responsible for 30%
of all fishing in the world, with an estimated economic loss of up to $23 billion per year [1I]. Not
only do illegal activities threaten marine ecosystems, but the resistance of many marine species
to climate change is compromised by overfishing, which increases the vulnerability of marine
fisheries production to ocean warming. Furthermore, ongoing warming will impede efforts to recover
overfished populations [2]. Satellite imagery can be used to detect vessels on sea and to determine if
these vessels are conducting illegal activities.

Synthetic Aperture Radar (SAR) images are created using satellites that emit radio waves towards the
earth and capture the waves reflected back by objects [3]. When a ship is detected on these images, it
can be determined whether a corresponding Automatic Identification Signal (AIS), which all ships
should transmit every few seconds, can be linked to that ship. If this is not the case, the ship could
possibly be conducting illegal activities [4]. Some satellites can image about 7 million square miles
per day and thus various machine learning algorithms are used nowadays to detect ships in these SAR
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images [5]]. However, current models are not yet able to process the SAR data both efficiently and
with high accuracy, which results in high resource costs and which could impede their use in real-time
systems. Therefore, there is a need for models that can quickly and accurately detect ships in SAR
images o allow the Coast Guard to take timely and efficient action when the models detect illegal
fishing [6]. The speed and performance of machine learning models are often negatively correlated
and, therefore, it is necessary to make an appropriate trade-off for this.

We investigated optimiza-
tions for machine learning

models, agnostic as to how Expensive:

the base model functions, —
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detection model. Figure[] expensive detection model is skipped.

gives an overview.

2 Related Work

The launch of the first SAR satellite in the United States in 1978 led to the emergence of several SAR
ship detection methods [[7]. These initial methods are based on traditional detection methods that
manually design features [8, 9] [T0]. These traditional methods proved too slow, required complex
manual work and were inaccurate [11]]. The rise of neural networks led to the use of advanced object
detection techniques due to their higher accuracy and lesser need for human intervention. This was
also the case for the SAR ship detection community: the proliferation of SAR data [[12] in recent years
has contributed to the increase in the use of deep learning (DL) in SAR ship detection [[13 [14} [13].
In these models, the traditional features (such as gray level, HOG, etc.) are replaced by features
produced by CNNs. The SAR dataset used in this study is the Large-Scale SAR Ship Detection
Dataset-v1.0 (LSSSDD) [16]. The dataset contains 15 SAR images from the Sentinel-1 satelliteﬁ
with a size of 16000 x 24000 pixels, divided into 900 sub-images of size 800 x 800.

3 Efficiency optimizations

A large percentage of the SAR sub-images do not contain ships and so time is lost by performing
object detection on them. The goal of our optimizations is to perform detection on as few images
as possible with minimal loss of performance. To achieve this, we use two models that efficiently
determine for each sub-image whether a ship is present or not, before applying the more expensive
ship detection model that locates each ship. If the models conclude that no ship is present on an
image, the image is not fed to the detection model. A trade-off has to be made between inference
time and performance, by choosing the positive classification threshold of the efficient first-stage
classification.

Fast classification with small CNN This optimization implements a binary classification model
with a CNN. The CNN produces a score s between -1 and 1, with a score lower than the chosen
threshold ¢!f indicating that at least one ship is present, a higher score that no ship is present. Since
the goal of optimization is saving time, the small and efficient MobileNetV2 architecture was
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used. [ is a SAR sub-image of size 800 x 800.

I contains a ship if olf < ¢elf
I does not contain a ship ~ if s°!f > ¢°If

far(I, ) = CNN(I) = s°If { N

The MobileNetV2 model minimizes inference time with minimal loss of performance by using a new
type of layer module. Initially, weights trained on the ImageNet dataset [[18] are loaded in. Then, the
final layers of the model are retrained on the LSSSDD until the validation loss converges.

Correlation in ship presence between neighboring images Another way to avoid running object
detection is to predict ship presence in a given sub-image based on the presence of ships in neighboring
sub-images. In this optimization, object detection is first conducted on a subset of the sub-images.
The images on which object detection is initially performed are chosen via two patterns shown in
Figure [} The optimization with the checkers and « pattern are respectively noted as feor-checkers
and feor.o. The patterns check respectively 50% and 25% of all the sub-images in the initial step.
Afterward, using that information, the correlation algorithm predicts for each of the remaining
sub-images whether a ship is present. This is done by taking the weighted average of a ship presence
indicator of neighboring images on which ship detection was conducted. If s°°" is greater than a
chosen threshold ¢°', the image is fed to the object detection model. The time to calculate s, is
negligible in comparison to the time necessary to perform object detection.

fcor(I7 K,w,tcor) = Z Z wj]li — Scor

J<KiEN;

I contains a shi if scor > ¢eor
{ P = 2)

I does not contain a ship  if s < ¢°*

In this equation, N; is the set of neighbours that are j tiles away, w; is the weight given to all
neighboring tiles that are j tiles away, and 1; indicates whether neighbor 7 contains at least one ship
or not. Neighbours that are 1 tile away get the largest weight w;, neighbours that are 2 tiles away a
smaller weight, and so on.

4 Experiments

An overview of the split of the data set is given in Table[2] We used a Faster R-CNN model with a
ResNet-50 backbone to detect ships in the SAR images [19,[20]. We start training from pre-trained
weights for object detection on MSCOCO [21]], and retrain on the LSSSDD dataset with use of the
Detectron2 libraIyE] until the validation loss converges.

4.1 Results
Table [1] shows that the baseline
: Faster R-CNN model achieves an
Model Total Time (s) AP Average Precision (AP) of 0.711 in
Baseline 810.84 0.711 a total of 811s (including load and
far({, tilf) 28393 0.693 detection time). All optimizations
far(1, 13" . 362.70  0.706 drastically reduce the total time,
feora (L, K1, w, 87) 405.41  0.616 while losing limited AP. When ap-
Jeora (I, Ko, wo, 157) + far(1,157) 20271 0.638 plying the optimizations, time sav-

ings can be weighed against perfor-
mance retention. For this purpose,
the F g score is calculated between
the AP of the model and the time savings compared to the baseline model. The time gain is equal to 1
- the relative time (RT) compared to the baseline model (RT = Tou}lot;’{lfixggfog:;:l‘;?o“). The smaller 3,
the more weight the AP gets in the / 3 score.

Table 1: Total time and average precision for five SAR images.

AP (1 — RT)
2. AP+ (1 — RT)

Fp=(1+p5% @)
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Figure 2: Relative AP and percentage of time saving for the optimizations and an algorithm that
deletes random sub-images from the testset.

Classification model A fast CNN first predicts which images contain a ship. The classification
time of all sub-images of one SAR image is approximately 6s. The best results are given in Table|[I]
With #§If = 0 the model achieves an AP of 0.693 in 35% of the time of the baseline model, resulting
in a F 1 score of 0.673. This optimization produces the highest overall [ ¢ 25 score (AP has higher
weight) with t%lf = 0.2, with f ¢.95 = 0.695. This model achieves an AP of 0.706 in 44% of the time.

Correlation algorithm This optimization determines whether to run detection on a sub-image
based on the presence of ships in neighboring images, following eq. (). The calculation of the
correlation score is negligible compared to the object detection time of the sub-images. The highest
F 1 score achieved is equal to 0.553 with K = 2, w; = 1, w2 = 0.1 and #*" = 0.4375 as seen in
The highest [ ¢ 25 score is equal to 0.637. This optimization, therefore, does not surpass the f g of
the classification optimization.

Combination Both optimizations are combined by first dividing the SAR sub-images according to
the chosen correlation pattern and, before performing detection, first predicting using the fast CNN
whether the sub-image contains a ship. As a result, the detection model only performs detection
on the sub-images that are classified as containing a ship by both optimizations. This combination
produces a f 1 score (time savings and AP have equal weight) of 0.688, higher than the individual
classification optimization. It achieves an AP of 0.638 in only 25% of the time of the baseline model.
This is shown in Tablewere K =2,w; = 1,wy = 0.5, £ = 0.25 and t$f = 0.

Figure 2] shows the time savings vs. the AP as a curve per optimization, with the points on the
curve corresponding to different thresholds ¢. As expected from the f g scores, the classification
optimization retains performance best (curve with highest y-coordinates). Both optimizations perform
better than an algorithm that randomly removes images from the test set. It is also visible that the
combination of both optimizations outperforms individual optimizations in terms of time savings
(curve with highest x-coordinates).

Conclusion In this paper, we studied vessel detection in SAR images to counter illegal fishing.
We introduced and tested two optimization techniques as a first-stage filter to make the detection
as efficient as possible. From the experiments, we concluded that a classification model based on
MobileNetV?2 yields the best results when more weight is given to performance retention: approx-
imating the baseline AP to 99.5% in 44% of the time. If the reader gives equal weight to time
savings and performance, the combination of the correlation- and classification-optimization is best,
approximating the baseline AP to 92.7%, in only 25% of the time. We hope this study makes clear
the importance of detection efficiency, and paves the way for more efficiency improvements.
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A Appendix

Al LSSSDD

In Figure 3]an example of a SAR image is given. Figure ] depicts a sub-image containing a ship and
one without a ship. Table 2] information about the split of the LSSSDD for training and testing is
given.

W

Figure 3: Example of a SAR image [16].

(a) Sub-image without a ship. (b) Sub-image with a ship.
Figure 4: Example of a SAR sub-image without and with a ship.

Dataset || Ids | # Subimgs | # Vessels | % Subimg with # Vessels /
a vessel subimg with a vessel
train 1-10 6000 3637 18.7% 3.24
test 11-15 3000 2378 24.5% 3.23

Table 2: Overview of the split into train and test set of the LSSSDD [16].



A.2 Patterns for the correlation algorithm

Figure [5]shows the two used patterns for the correlation algorithm.

(a) Checkers pattern.

(b) « pattern.

Figure 5: Patterns used in the correlation-optimization.

A.3 Results and / 3 scores for the optimizations

Method Precision | Recall | AP RT F1 Fos | Foos
GPU CPU

fae(Z1,0) 0.788 0.724 1 0.693 | 35% 32% | 0.673 | 0.684 | 0.690

far(1,0.1) 0.776 0.731 | 0.698 | 38% 35% | 0.659 | 0.682 | 0.693

far(1,0.2) 0.768 0.741 | 0.706 | 44% 41% | 0.622 | 0.670 | 0.695

far(1,0.3) 0.758 0.746 | 0.710 | 70% 68% | 0.421 | 0.557 | 0.657

far(1,0.38) 0.754 0.748 | 0.711 | 95% 93% | 0.098 | 0.203 | 0.410

Table 3: Results Faster R-CNN model with fs
Method Precision | Recall | AP RT F1 Fos | Foos
GPU CPU

feorcheckers (£, 3,[1,0.1,0.1],0.45) 0.769 0.689 | 0.657 | 63% 63% | 0.470 | 0.566 | 0.627
feor-checkers (5 2, [1,0.33], 0.5) 0.768 0.672 | 0.640 | 62% 62% | 0.479 | 0.564 | 0.616
Seor-checkers (£ 2, [1,0.1],0.5) 0.768 0.672 | 0.640 | 62% 62% | 0.478 | 0.564 | 0.616
feor-checkers (1, 1, [1], 0.5) 0.766 0.508 | 0.701 | 67% 67% | 0.444 | 0.556 | 0.630
Seor-checkers (£, 2, [1,0.1],0.375) 0.766 0.701 | 0.667 | 67% 67% | 0.442 | 0.554 | 0.629
feor-checkers (1, 3, [1,0.1,0.1], 0.35) 0.764 0.706 | 0.672 | 68% 68% | 0.436 | 0.552 | 0.632
Seor-checkers (1, 3, [1,0.1,0.1],0.2) 0.760 0.735 | 0.699 | 80% 80% | 0.315 | 0.470 | 0.611
feor-checkers (1, 3, [1,0.33,0.1],0.2) 0.761 0.737 | 0.701 | 79% 79% | 0.319 | 0.474 | 0.614
Seor-checkers (15 3, [1,0.5, 0 25],0.2) 0.761 0.738 | 0.703 | 81% 81% | 0.300 | 0.457 | 0.607

Table 4: Results Faster R-CNN model with feorcheckers-




Method Precision | Recall | AP RT F1 Fos | Foas

GPU CPU
feor-a(Z,3,]1,0.1,0.1],0.35) 0.778 0.660 | 0.631 | 53% 53% | 0.536 | 0.589 | 0.618
feora(1,2,[1,0.1],0.4375) 0.788 0.644 | 0.616 | 50% 50% | 0.553 | 0.589 | 0.608
feor-a(Z,3,[1,0.5,0.1],0.35) 0.775 0.651 | 0.623 | 52% 52% | 0.545 | 0.589 | 0.612
feora(1,3,[1,0.1,0.1],0.2) 0.764 0.694 | 0.662 | 62% 62% | 0.486 | 0.578 | 0.635
cor-a (1, 2,[1,0.1],0.1875) 0.770 0.690 | 0.658 | 60% 60% | 0.496 | 0.582 | 0.634
feor-a(1,2,]1,0.1],0.125) 0.767 0.696 | 0.664 | 62% 62% | 0.487 | 0.580 | 0.637
feor-a(1,3,]1,0.5,0.1],0.1) 0.757 0.743 | 0.708 | 79% 79% | 0.327 | 0.479 | 0.614
feor-a(1,3,[1,0.75,0.1],0.1) 0.757 0.743 | 0.708 | 81% 81% | 0.304 | 0.460 | 0.606
Seora(1,3,[1,1,0.1],0.1) 0.757 0.743 | 0.708 | 81% 81% | 0.304 | 0.459 | 0.606

Table 5: Results Faster R-CNN model with fioq-
Method AP RT F1 Fos | Foos

GPU CPU

feor-a (1,2, [1, 0.5], 0.25) en fue(Z,0) | 0.638 | 25% 24% | 0.688 | 0.657 | 0.643
feor-a(1,2, [1, 0.5], 0.25) en fue(£,0.2) | 0.664 | 32% 30% | 0.671 | 0.666 | 0.665

Table 6: Results Faster R-CNN model with f.o; and fo¢

A.4 Hyperparameters for the used DL models

Hyperparameter Value
Batch size 256
Base learning rate 0.001
Momentum beta 0.9
Weight decay 0.0001
Anchor sizes 10, 16, 32, 40, 64
Anchor aspect ratio’s 05,1,2
NMS threshold 0.5

Table 7: Hyperparameters for the Faster R-CNN model

Loss function Function
RPN classification loss function softmax binary CEL
RPN localisation loss function L1 loss
Bounding box localisation loss function smooth L1 loss
Bounding box classification loss function softmax CEL

Table 8: Loss functions for the Faster R-CNN model

Hyperparameter ~ Value
Batch size 32
Base learning rate  0.0001
Table 9: Hyperparameters for the MobileNetV2 model




	Introduction
	Related Work
	Efficiency optimizations
	Experiments
	Results

	Appendix
	LSSSDD
	Patterns for the correlation algorithm
	Results and  scores for the optimizations
	Hyperparameters for the used DL models


