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Abstract

Wind energy’s ability to liberate the world of conventional sources of energy relies
on lowering the significant costs associated with the maintenance of wind turbines.
Since icing events on turbine rotor blades are a leading cause of operational failures,
identifying icing in advance is critical. Some recent studies focus on specific wind
parks and fail to generalize to unseen scenarios (e.g. new rotor blade designs). We
propose the utilisation of synthetic data augmentation via neural style transfer to
improve the generalization of existing ice prediction models. We show that training
models with augmented data that captures domain-invariant icing characteristics
can help improve predictive performance across multiple wind parks. Through
efficient identification of icing, this study can support preventive maintenance
of wind energy sources by making them more reliable towards tackling climate
change.

1 Introduction

With a growing awareness of the pressing need to transition to renewable energy sources globally
towards combating climate change, the total global installed wind power capacity has touched over
837 GW in 2022 [1]. Winters are generally considered to be highly promising for wind power
generation, owing to higher wind speeds and increased air density accompanied with low prevailing
temperatures [2]. However, some countries, particularly in Northern Europe and North America, are
highly prone to icing conditions on the wind turbine rotor blades – leading to high stress on the overall
structure of the turbines that prohibits their safe operation [3, 4]. Such icing events not only give
rise to unexpected downtimes, but also reduce the potential energy yield and shorten the mechanical
lifetime of the turbines [5]. Most ice detection sensors mounted on rotor blades at present vary greatly
in terms of their quality and are not sufficiently accurate [6, 7]. Additionally, these approaches suffer
from several drawbacks [6] – such as inability to provide direct ice measurements. As a potential
solution, there has been a rising interest in leveraging colour images (RGB) of turbine rotor blades
acquired through cameras installed on the nacelles and applying computer vision techniques for
detecting ice accretion on the surface of the blades [8, 9]. A camera generally captures images of
the complete rotor blade even under harsh weather conditions (e.g. foggy environments), making
this technique more robust than sensor-based approaches [10] and suitable for remote autonomous
inspection [11].
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There has been very limited research in applying Artificial Intelligence (AI) techniques for ice
detection on rotor blades. Some studies [12, 13, 14, 15, 16] have utilised operational Supervisory
Control and Data Acquisition to train conventional machine learning models (e.g. Decision Trees)
as well as leveraged Deep Learning (DL) for ice detection. Only a few studies have applied DL for
detecting icing based on image data [4, 6]. While the existing studies have achieved near-perfect
accuracy [4] with pre-trained Convolutional Neural Networks (CNNs), they are only effective in
detecting icing on the rotor blades for the wind park from which the original training images were
sourced. However, our experiments show that such models seem to perform poorly in generalizing
to different wind parks – thus making them unsuitable for ice detection in new scenarios (e.g. with
new rotor blade characteristics). We aim to tackle this challenge by facilitating domain adaptation –
our goal is to ensure that a model trained on data from a specific wind park (source domain) is able
to make effective predictions in new park locations (target domain). We propose the utilisation of
synthetic data augmentation via neural style transfer with CNNs. The proposed method helps in the
generation of synthetic images that can capture transferable fine-grained icing representations that are
not bound to a specific wind park. By training the domain-specific models with the curated synthetic
data, the generalizability of the models is improved towards detecting icing across different wind
parks. This can help facilitate adoption of such domain-agnostic models across multiple wind parks
in the near future for preventive maintenance of turbines, providing instrumental decision support for
making wind turbines more reliable towards tackling climate change.

2 Dataset description and pre-processing

For our study, we utilised RGB images recorded by cameras in two real-world wind parks – wind
park A located in North America and wind park B located in Northern Europe. Note that the images
acquired from wind park A are of significantly higher quality than wind park B owing to better
camera quality and placement. The images were manually labelled into three classes by two humans
(with cross-validation also performed between the labels) – no rotor blade on foreground, rotor blade
without icing and rotor blade with icing. We experiment with both scenarios – wind park A as source
domain and wind park B as target domain and vice versa. The training data of the base sets contains
150 background images, 20 rotor blade images plus 50 rotor blade images from the target domain
and 70 icing images from the source domain. The rotor blade and ice images are augmented with up
to 10% random rotation, reaching 400 images. The test data includes 200 images of each class for
wind park A and 800 for wind park B.

3 Proposed Methodology and Learning Models

We intend to utilise existing DL-models which have already achieved success in domain-specific ice
detection in past literature as baselines, including MobileNetV2, VGG19 and Xception. We utilised
the same dataset types from wind parks used in the past study in our experiments for fair comparison
[4]. However in this study, we aim to develop models that are fine-tuned to the domain-specific
target using synthetic data for better generalization to other wind parks. As successful training of
CNN models for domain-specific applications requires substantial amounts of data, the networks
generalize poorly on the face of small, limited datasets with significant class imbalance [17]. As the
existing models are domain-specific and bound to distinct wind parks, we apply transfer learning
to accomplish generalized ice detection that is independent of characteristics of the wind parks
the models have previously been trained on. Consider the RGB images from wind park A as the
source domain, and the images from wind park B as the target domain (or vice versa). The target
domain is significantly different from the source because of the varying rotor blade shape, background
of the geographical area, quality of the recorded images etc. However, both domains show some
similarities regarding the presence or absence of ice. The goal is to train models which can make
more effective predictions for the target domain, when trained only with ice images from the source
domain. Therefore, we chose neural style transfer with CNNs [18, 19] to perform synthetic data
augmentation that is utilised to train the standalone ice-prediction models.

The neural style transfer algorithm employs an optimisation technique to transform a content image
to the style of a reference style image – while ensuring that the weighted sum of the content loss and
style loss functions computed across the content, style and generated stylised images are minimised.
We also experimented with a more modern approach – a CycleGAN [20]. While the CycleGAN does
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Figure 1: Framework for generalized ice detection with neural style transfer. Plain rotor blades in the
target domain are styled with ice from the source domain.

not require a corresponding style image to generate stylised images as it directly learns transferable
representations from the content image, we observed that the CycleGAN generated sub-optimal
results for our problem – likely due to the small size and significant class-imbalance in our data set.
For our study, we used a combination of two different approaches for synthetic image generation:
(1) A VGG19 model architecture [21] (originally pre-trained with weights from ImageNet for image
classification) (2) A pre-trained fast style transfer model (leveraging arbitrary image stylization [22])
(no fine-tuning required). We leverage images from the source domain that represent the ice texture
in the rotor blades as style images. Note that the icing characteristics in wind turbine rotor blades are
domain-invariant irrespective of rotor blade designs in the different wind parks – we aim to reproduce
this characteristic in our study. The goal is to modify the plain rotor blade images of the target domain
(content images) with the icing characteristics of the source domain, to improve the generalizability
of the model. To specifically modify the parts of the source image which contain the rotor blade, we
followed an overlaying process – wherein, a mask is applied to the content image and a reverse mask
is applied to the generated stylised image. The overlayed images are pre-processed (as discussed in
Section 4) and finally utilised for training the CNN models for generalized ice detection. Figure 1
depicts the complete process of the proposed approach.

4 Experiments

Three models - MobileNetV2, VGG19 and Xception were trained – as these have achieved the best
results in the past study in our domain [4]. Before feeding in the images to the models, the default
pre-processing steps (e.g. reshaping the images) were followed. Two distinct strategies were used
to train the CNN models – Strategy 1: An output layer (dense layer, three classes) was appended
to the model and all model layers were trainable. Strategy 2: The generic model backbone was
frozen and only the output layer (dense layer, three classes) appended to the model was trainable. For
both strategies, we used Stochastic Gradient Descent for optimisation with an initial learning rate of
0.0015 and momentum of 0.9, and a learning rate scheduler that decreases the learning rate every 3
epochs by a factor of 0.94. The models were trained for 30 epochs with a batch size of 16.

For neural style transfer, we leveraged the intermediate layers (without the classification head) of
the VGG19 model and applied the Adam optimiser with a learning rate of 0.02, beta_1=0.99 and
epsilon=0.1 to train the model for 40 epochs with 100 steps per epoch and modify the content with
the style from our pre-processed images. As the generation of the images at this stage leads to high
frequency artifacts and significant variation loss, a denoising process for further optimisation of the
images over 40 epochs with 100 steps per epoch and a total variation weight of 30 was used. Default
hyperparameters values for the fast style transfer model [22] were applied. 50 rotor blade images of
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the target domain are style-transferred to generate 200 additional synthetic images for the ice class
with the previously described techniques.

Table 1: Results with the training strategies for both wind parks used as target datasets – with
synthetic data, the model performance is improved compared to the baselines and the best F1 scores
are highlighted in bold.

Model Target Data set Baseline (% Acc - F1) Training strategy Synthetic (% Acc - F1)

MobileNetV2
Wind park A 63.3 - 0.528 Strategy 1 68.5 - 0.652

Strategy 2 69.6 - 0.664

Wind park B 39.4 - 0.289 Strategy 1 41.2 - 0.307
Strategy 2 46.2 - 0.400

VGG19
Wind park A 60.2 - 0.488 Strategy 1 66.2 - 0.622

Strategy 2 83.6 - 0.831

Wind park B 39.6 - 0.284 Strategy 1 43.5 - 0.389
Strategy 2 45.8 - 0.402

Xception
Wind park A 64.1 - 0.516 Strategy 1 70.9 - 0.666

Strategy 2 68.8 - 0.666

Wind park B 43.1 - 0.332 Strategy 1 42.1 - 0.336
Strategy 2 45.0 - 0.394

5 Results

Table 1 describes the experimental results obtained on training the three different CNN models for
generalized ice detection, following the two different training strategies described in Section 4. Note
that we also used two distinct target datasets for evaluating the models – wind park A and wind park
B. The baseline models were trained without the synthetic images while using the synthetic data the
model makes predictions for the target dataset when only trained with images from the source domain.
Based on the F1 score, clearly, the VGG19 model achieves the best performance in generalized ice
detection with synthetic images (see Table 1). Additionally, this model achieves an accuracy of up to
83.6% and F1 score of 0.831 for wind park A as the target dataset, representing an accuracy gain of
19.5% compared to the best baseline model for wind park A (Xception with 64.1% accuracy and F1
score of 0.516). While the prediction results are not as promising when wind park B is used as the
target dataset (which may primarily be due to the lower quality of images in wind park B compared
to wind park A), the proposed approach still showcases a noticeable performance gain compared to
the baseline models. These results highlight that the proposed approach yields improved predictions
for the target domain when the models are only trained with images from the source domain.

6 Conclusion

The study shows that synthetic data augmentation through neural style transfer improves the general-
ization of models used for ice detection. To the best of our knowledge, this is the first study to propose
generalized detection of ice accretion on rotor blades and can be useful in making more effective
icing predictions e.g. in new wind parks that the DL-models have not been previously trained on.
This can help improve the reliability of wind turbines, making them a more promising source of
renewable energy. Despite its promise, this study has a limitation of only being able to demonstrate
high accuracy in generalized ice detection when the target dataset has high quality images, while with
lower quality images the performance gain is marginal. Another limitation may be the hand-labelling
of data in our study. Although two different humans annotated the datasets, models trained with such
data may be affected by the inherent bias of the annotators. Future work aims to automatically create
segmentation masks using U-Net, to feed them to paired image-to-image translation models like
Pix2Pix towards improving the characteristics of synthetic images. In addition, future research may
use regression models for quantifying the ice accumulation.
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