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Abstract

One of the primal challenges faced by utility companies is ensuring efficient supply
with minimal greenhouse gas emissions. The advent of smart meters and smart grids
provide an unprecedented advantage in realizing an optimised supply of thermal
energies through proactive techniques such as load forecasting. In this paper, we
propose a forecasting framework for heat demand based on neural networks where
the time series are encoded as scalograms equipped with the capacity of embedding
exogenous variables such as weather, and holiday/non-holiday. Subsequently,
CNN:ss are utilized to predict the heat load multi-step ahead. Finally, the proposed
framework is compared with other state-of-the-art methods, such as SARIMAX
and LSTM. The quantitative results from retrospective experiments show that the
proposed framework consistently outperforms the state-of-the-art baseline method
with real-world data acquired from Denmark. A minimal mean error of 7.54%
for MAPE and 417kW for RMSE is achieved with the proposed framework in
comparison to all other methods.

1 Introduction

In the current global scenario, the world is focused on gaining momentum in minimizing its carbon
footprint. In 2020, 90% of the global heat supply was fueled by fossil fuels, and although significant
technological advances have been made, the global energy requirement for space and water heating
has been stable since 2010 [[1], [2]]. With an increasing urgency for conscious energy utilization, a
reliable approach to predicting heat demand is imperative. The nature of the heat consumption data is
in the form of a time series which is a set of data samples that provide information as a consequence
of their sequential nature. Time series forecasting is the process of predicting target values at a
future time period from observed historical data. The complexity of heat demand forecasting arises
owing to its non-linear nature induced by human behavioral patterns, dependency on weather [3]],
working/non-working days [4]], building properties [5]], etc., imparting daily, weekly and seasonal
patterns. Such complex dependencies make the heat demand forecasting problem multi-dimensional.

State-of-the-art heat forecasting methods can be categorized into three groups - statistical mod-
els, machine learning, and deep learning models. Statistical methods that are regression-based
include Auto-regressive Moving Average (ARMA), Auto-regressive Integrated Moving Average
(ARIMA), Seasonal ARIMA with eXogenous factors (SARIMAX), Auto-regressive Conditional
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Heteroskedasticity (ARCH) and their variants [6]], [7]. Machine learning methods such as Support
Vector Regression (SVR) are also used in the context of time series forecasting as standalone and or
as hybrid models with statistical models [8]], [9], [10]. Deep learning methods are currently at the
forefront of time series forecasting as a consequence of their ability to learn non-linear functions
through universal function approximators. Architectures such as Recurrent Neural Networks (RNNs)
and its progressive variants leverages the sequential nature of time series data to forecast future target
values [[11]], [12f], [13], [14].

An overlooked aspect of forecasting is the frequency component of the time series. Many real-life
data are a complex aggregation of disparate components. With advances in signal processing, such
time series signals can be transformed into a time-scale representation in the form of a scalogram
using Continuous Wavelet Transform (CWT). A scalogram is analogous to an image that represents
the coefficients of CWT in time and scale as its two spatial coordinates with detailed time-frequency
resolution compared to a spectrogram which is limited with fixed window size, thus enabling a multi-
resolution feature analysis of the time series. The scales are inversely proportional to frequencies.
This essentially shifts the domain from time series to computer vision where Convolutional Neural
Networks (CNNs) are employed for image classification, and object recognition among others. We
leverage this image-like representation of the time series to learn localised time-frequency features,
discerning different frequencies at different points of time [[15]], [[16].

Considering the multi-faceted forecasting challenge, we propose a framework contributing the
following: (1) A deep learning based forecasting model for short-term 24 hours ahead heat demand at
a district level; (2)A multi-resolution representation (Scalogram) based framework capturing localized
non-linear time-frequency features of heat demand with exogenous variables; (3) Capacity of the
framework to forecast in different seasons and evaluate its performance with existing standard deep
learning and statistical method.

2 Method Overview

The core methodology of our framework (Figure [I) relies upon multi-step sequence-to-sequence
prediction with the ability to process multi-resolution representation (Wavelet Scalograms) of multiple
time series inputs, viz. historical consumption, historical and forecasted weather data, and encoded
exogenous information viz. day of the week or a day being public holiday concurrently.
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Figure 1: Pictorial representation of the framework.

Let x(t) = [¥t—h, Tt—ht1, ..., ¥t] Where z; € R is the consumption value at time ¢ represent the h
historical observations that are leveraged to forecast the target variables y (t) = [Z¢41, Tt42, -y Tt4n]
where n is the forecasting horizon. The wavelet scalograms for historical heat consumption, historical
weather wp,(t) = [Wi—p, Wi—pt1, ..., we), and forecasted weather over the forecasting horizon
wi(t) = [Wet1, Wit2, ..., Wepn] are generated through CWT. The wavelet transform converts each
signal from a 1-dimensional time series into multi-dimensional data of size s x h, where s is the
number scales in the scalogram. The mathematical background for CWT is illustrated in [[17]], [[18]].
The individual wavelet scalograms are of the same dimension due to a constraint on s to be constant
for all three data streams to enable concatenation for a 3-channel image-like representation of size
3 x s x h. The use of wy(t) and we(¢) places an additional constraint such that 2 = n. Additionally,
the weekday/holiday (or weekend) information of the current day and the next day are encoded into



a matrix of dimension s x h having only ones or only zeros, depending upon whether the day of
concern is a weekend/public holiday or a weekday. These two matrices are further concatenated to the
existing image-like 3-channel data, to form a 5-channel input to the CNNs. The CNN based model
is trained with (N/h) number of examples where the model aims to learn and translate h historical
observations into n future estimations, by extracting features like the trend, multiple seasonality,
dependencies on external factors and latent features from the multi-channel input. The pooling layer
after convolution is deactivated because the pooling layers tend to smoothen the predictions [[19]]. The
CNN model which is used here has three convolution layers followed by one flatten layer and three
fully-connected layers with a dropout between the last two fully-connected layers. The output layer
has n number of nodes, the same as the forecasting horizon (n hours).

3 Experimental setup

Meter-level heat consumption data from 2015 to 2018 of a Danish utility with three district heating
zones are utilized to conduct retrospective experiments. The consumption data of meters are hourly
sampled and are aggregated at a zonal level to give district heating demand. Weather data is
represented by feel-like temperature with an hourly resolution for the same Danish town as feel-
like temperature conveys combined information of maximum and minimum temperature, wind
speed, humidity, and other meteorological information. We also incorporated the information on
public holiday from the Danish calendar along with the information about the day of the week.
The consumption data, weather data, and the day of week/holiday data are sampled from the same
time period. This data is then split into 730 days for training, 180 days for both validation and
testing. The input to the model is a 5-channel image-like data where the scalograms are generated
with h, s = 24 using the Mexican-hat wavelet basis and the output is the forecasted heat demand
with n = 24. In order to prevent the model from being trained with erroneous observations, the
accumulated consumption data from the meters are first checked for monotonic increase as negative
consumption or flow is not plausible. Anomalous data indicating a negative rate of consumption
are adjusted to a zero consumption state. The actual heat consumption data is obtained through a
first-order difference of the accumulated consumption data. The actual consumption data, along with
the feel-like temperature are further feature scaled (normalised) between zero and one.

The three convolution layers have [32, 64, 128] kernels with a kernel size of three, with ’same’ padding
and Rectified Linear Unit (ReLU) activation function whereas the fully connected layers are activated
though Leaky-ReLU activation function. We use the Adam optimizer and Mean-Squared-Error
(MSE) as a loss function for training the model. The network is trained till convergence and a suitable
model is selected according to the validation loss to prevent over-fitting. A Batch size of 7 was
chosen for training so that each batch represents each week. For quantitative evaluation, we use the
Mean Absolute Percentage Error (MAPE) metric for 24-hours ahead prediction. Due to the skewness
and asymmetric tendency of penalization of MAPE in time series prediction [20],[10]], Root Mean
Squared Error (RMSE) is additionally chosen to evaluate the forecasting performance.

4 Results and Discussion

The performance of the proposed framework is evaluated against an LSTM model and SARIMAX,
with a constant experimental setup, across different supply zones, and over different climatic seasons,
both qualitatively and quantitatively. Figure [2]illustrates the performances of the models across
different seasons of the year in different zones. The qualitative comparison depicted in Figure
(top left, top right) demonstrates both the superiority of our proposed framework in capturing the
time-varying trend present in daily consumption over the week or season as well as the inherent
capacity to capture the underlying daily level load profile regardless of the season. In contrast, the
LSTM model shows its ability to predict daily level load profiles across different seasons but fails to
capture the change in the long-term context of a global trend across different seasons leading to under
forecasting in winter and over forecasting in summer. The SARIMAX model learns the global season-
wise trend and a simplified daily seasonality but not the extreme dynamic range of consumption
during weekends or public holidays. The proposed method, in comparison, demonstrates its ability to
not only learn the global trend and daily seasonality, but also its relationship with other factors like
feel-like temperature, and holiday information, along with the local fluctuation of consumption that
happens in a day.
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Figure 2: Qualitative comparative evaluation of all models over eight days in winter 2018 (top left)
and summer 2018 (top right) in a heat supply zone; MAPE of prediction over different zones (bottom
left), RMSE of prediction over different zones (bottom right).

This proves the ability of our proposed model to learn the dependency on both frequency and temporal
components, which is present in the wavelet scalograms. The quantitative evaluations shown in Figure
[2] (bottom left and bottom right) depicts the superiority of our proposed method over the other two
baseline methods in terms of its lower mean MAPE, and much lower variance across different seasons
and zones, which proves our claim regarding the method’s robustness to comprehend consumption
patterns irrespective of seasons or district heating zones.

5 Conclusion

In this work, we formulate a CNN-based framework for heat load prediction with an image-like
representation for time series. As a consequence, exogenous variables such as weather data, in-
formation regarding workday/weekends/holidays can be incorporated as additional channels in a
multi-dimensional image straightforwardly. Using the proposed framework, we perform a 24 hours
ahead forecast for hourly sampled data and compare its performance to a baseline LSTM model as
well as the SARIMAX method. Both qualitative and quantitative results demonstrate the ability of the
proposed framework for heat demand forecast in comparison to state-of-the-art methods with lower
forecasting error metrics. One limitation in the proposed framework is that the forecasting horizon
and historical inputs must be of the same size to enable concatenation to produce the 5-channel input.
As an extension to this work, the effects of convolution size, type of convolution can be explored
to understand the importance of spatial features in the scalogram. From an application standpoint,
under-forecasting heat demand is less preferred than over-forecasting, to ensure adequate supply. In
this regard, a loss function that strongly penalises under forecasting than over forecasting needs to
be incorporated. Forecasting at a district zonal level helps with optimizing the distribution of heat
produced at a zonal level, enabling informed decision making - leading to further reduction of carbon.

References

[1] Thibaut Abergel Chiara Delmastro. International Energy Agency (IEA) (2021), Heating. IEA,
Paris, 2021. URL: https://www.iea.org/reports/heating.

[2] Chiara Delmastro. International Energy Agency (IEA) (2021), District Heating. IEA, Paris,
2021. URL: https://www.iea.org/reports/district-heating.


https://www.iea.org/reports/heating
https://www.iea.org/reports/district-heating

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Victoria Aragon, Patrick A.B. James, and Stephanie Gauthier. “The influence of weather on
heat demand profiles in UK social housing tower blocks”. In: Building and Environment 219
(2022), p. 109101. 1SSN: 0360-1323. DOI: https://doi.org/10.1016/j.buildenv.
2022 .109101. URL: https: //www . sciencedirect . com/science/article/pii/
S50360132322003389.

Magnus Dahl et al. “Improving Short-Term Heat Load Forecasts with Calendar and Holiday
Data”. In: Energies 11.7 (2018). 1SSN: 1996-1073. DOI:110.3390/en11071678. URL: https:
//www.mdpi.com/1996-1073/11/7/1678|

Zhanyu Ma et al. “Statistical analysis of energy consumption patterns on the heat demand
of buildings in district heating systems”. In: Energy and Buildings 85 (2014), pp. 464—472.
ISSN: 0378-7788. DOI: https://doi.org/10.1016/j.enbuild.2014.09.048. URL:
https://www.sciencedirect.com/science/article/pii/S0378778814007853.

Erik Dotzauer. “Simple model for prediction of loads in district-heating systems”. In: Ap-
plied Energy 73.3 (2002), pp. 277-284. 1SSN: 0306-2619. DOI: https://doi.org/ 10|
1016/S0306-2619(02) 00078-8. URL: https://www.sciencedirect.com/science/
article/pii/S0306261902000788.

Tingting Fang and Risto Lahdelma. “Evaluation of a multiple linear regression model and
SARIMA model in forecasting heat demand for district heating system”. In: Applied Energy
179 (2016), pp. 544-552. 1SSN: 0306-2619. DOI: https://doi.org/10.1016/j.apenergy|
2016 . 06 . 133, URL: https://www. sciencedirect . com/science/article/pii/
S50306261916309217.

Luca Ghelardoni, Alessandro Ghio, and Davide Anguita. “Energy Load Forecasting Using
Empirical Mode Decomposition and Support Vector Regression”. In: IEEE Transactions on
Smart Grid 4.1 (2013), pp. 549-556. DOI:|10.1109/TSG.2012.2235089,

Arash Moradzadeh et al. “Performance Evaluation of Two Machine Learning Techniques in
Heating and Cooling Loads Forecasting of Residential Buildings”. In: Applied Sciences 10.11
(2020). 1SSN: 2076-3417. DOI: 10.3390/app10113829. URL: https://www.mdpi.com/
2076-3417/10/11/3829.

Satyaki Chatterjee, Siming Bayer, and Andreas K Maier. “Prediction of Household-level Heat-
Consumption using PSO enhanced SVR Model”. In: NeurIPS 2021 Workshop on Tackling
Climate Change with Machine Learning. 2021. URL: https://www.climatechange.ai/
papers/neurips2021/42.

Roman Petrichenko et al. “District heating demand short-term forecasting”. In: 2017 IEEE
International Conference on Environment and Electrical Engineering and 2017 IEEE Indus-
trial and Commercial Power Systems Europe (EEEIC / 1&CPS Europe). 2017, pp. 1-5. DOTI:
10.1109/EEEIC.2017.7977633.

Gowri Suryanarayana et al. “Thermal load forecasting in district heating networks using
deep learning and advanced feature selection methods”. In: Energy 157 (2018), pp. 141-149.
ISSN: 0360-5442. DOI: https://doi.org/10.1016/j . energy.2018.05. 111, URL:
https://www.sciencedirect.com/science/article/pii/S0360544218309381.
Daniel L. Marino, Kasun Amarasinghe, and Milos Manic. “Building energy load forecasting
using Deep Neural Networks”. In: IJECON 2016 - 42nd Annual Conference of the IEEE
Industrial Electronics Society. 2016, pp. 7046-7051. DO1:|10.1109/IECON.2016.7793413.
Sameh Mahjoub et al. “Predicting Energy Consumption Using LSTM, Multi-Layer GRU and
Drop-GRU Neural Networks”. In: Sensors 22.11 (2022). 1SSN: 1424-8220. DOI:|10.3390/
$22114062. URL: https://www.mdpi.com/1424-8220/22/11/4062|

Yi Zhao et al. “Forecasting Wavelet Transformed Time Series with Attentive Neural Networks”.
In: 2018 IEEE International Conference on Data Mining (ICDM). 2018, pp. 1452—-1457. DOT:
10.1109/ICDM.2018.00201.

Szabolcs Kovac et al. “Comparison of Heat Demand Prediction Using Wavelet Analysis and
Neural Network for a District Heating Network”. In: Energies 14.6 (2021). ISSN: 1996-1073.
DOI:10.3390/en14061545, URL: https://www.mdpi.com/1996-1073/14/6/1545.

O. Rioul and M. Vetterli. “Wavelets and signal processing”. In: IEEE Signal Processing
Magazine 8.4 (1991), pp. 14-38. DO1:110.1109/79.91217.

Manel Rhif et al. “Wavelet Transform Application for/in Non-Stationary Time-Series Analysis:
A Review”. In: Applied Sciences 9.7 (2019). 1SSN: 2076-3417. DOI: 10.3390/app9071345.
URL: https://www.mdpi.com/2076-3417/9/7/1345,


https://doi.org/https://doi.org/10.1016/j.buildenv.2022.109101
https://doi.org/https://doi.org/10.1016/j.buildenv.2022.109101
https://www.sciencedirect.com/science/article/pii/S0360132322003389
https://www.sciencedirect.com/science/article/pii/S0360132322003389
https://doi.org/10.3390/en11071678
https://www.mdpi.com/1996-1073/11/7/1678
https://www.mdpi.com/1996-1073/11/7/1678
https://doi.org/https://doi.org/10.1016/j.enbuild.2014.09.048
https://www.sciencedirect.com/science/article/pii/S0378778814007853
https://doi.org/https://doi.org/10.1016/S0306-2619(02)00078-8
https://doi.org/https://doi.org/10.1016/S0306-2619(02)00078-8
https://www.sciencedirect.com/science/article/pii/S0306261902000788
https://www.sciencedirect.com/science/article/pii/S0306261902000788
https://doi.org/https://doi.org/10.1016/j.apenergy.2016.06.133
https://doi.org/https://doi.org/10.1016/j.apenergy.2016.06.133
https://www.sciencedirect.com/science/article/pii/S0306261916309217
https://www.sciencedirect.com/science/article/pii/S0306261916309217
https://doi.org/10.1109/TSG.2012.2235089
https://doi.org/10.3390/app10113829
https://www.mdpi.com/2076-3417/10/11/3829
https://www.mdpi.com/2076-3417/10/11/3829
https://www.climatechange.ai/papers/neurips2021/42
https://www.climatechange.ai/papers/neurips2021/42
https://doi.org/10.1109/EEEIC.2017.7977633
https://doi.org/https://doi.org/10.1016/j.energy.2018.05.111
https://www.sciencedirect.com/science/article/pii/S0360544218309381
https://doi.org/10.1109/IECON.2016.7793413
https://doi.org/10.3390/s22114062
https://doi.org/10.3390/s22114062
https://www.mdpi.com/1424-8220/22/11/4062
https://doi.org/10.1109/ICDM.2018.00201
https://doi.org/10.3390/en14061545
https://www.mdpi.com/1996-1073/14/6/1545
https://doi.org/10.1109/79.91217
https://doi.org/10.3390/app9071345
https://www.mdpi.com/2076-3417/9/7/1345

[19]

[20]

Shuai Liu, Hong Ji, and Morgan C. Wang. “Nonpooling Convolutional Neural Network
Forecasting for Seasonal Time Series With Trends”. In: IEEE Transactions on Neural Networks
and Learning Systems 31.8 (2020), pp. 2879-2888. DOI:|10.1109/TNNLS.2019.2934110.
Paul Goodwin and Richard Lawton. “On the asymmetry of the symmetric MAPE”. In: In-
ternational Journal of Forecasting 15.4 (1999), pp. 405—408. 1SSN: 0169-2070. DOI: https:
//doi.org/10.1016/50169-2070(99) 00007 -2. URL: https://www.sciencedirect|
com/science/article/pii/S0169207099000072.


https://doi.org/10.1109/TNNLS.2019.2934110
https://doi.org/https://doi.org/10.1016/S0169-2070(99)00007-2
https://doi.org/https://doi.org/10.1016/S0169-2070(99)00007-2
https://www.sciencedirect.com/science/article/pii/S0169207099000072
https://www.sciencedirect.com/science/article/pii/S0169207099000072

6 Appendix

6.1 Wavelet Scalogram

The wavelet scalograms shown in Figure [3]depict the distribution of magnitude of wavelet transform
coefficients over different scales and temporal resolution. Here the wavelet scalograms of weather
information, i.e. feel-like temperature (Figure [3a} Figure [3c) and those of heat consumption (Figure
[3bl Figure[3d) clearly shows the intuitive inverse relationship between weather and heat consumption.
Clearly it is visible that not every time-scale component is having equal distribution of the magnitude
of CWT coefficients, which the model intends to interpret, exploit and predict the future consumption
vector.

Scalogram of Normalized hourly feel-like temperature for a day in January Scalogram of Normalized hourly heat consumption for a day in January

10 15 20 0 5 10 15 20
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(a) Wavelet scalogram of feel-like temperature for (b) Wavelet scalogram of heat consumption for a
a day in January. day in January.

Scalogram of Normalized hourly feel-like temperature for a day in July Scalogram of Normalized hourly heat consumption for a day in July
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(c) Wavelet scalogram of feel-like temperature for (d) Wavelet scalogram of heat consumption for a
a day in July. day in July

Figure 3: Visualization of wavelet scalograms of the time series data used for model training.

6.2 Impact of exogenous factors on heat demand

The Figure [ demonstrates the impact of weather on true and predicted heat consumption during
early spring of the year which exhibits frequent weather fluctuation. But the heat consumption is
not entirely steered by the weather but also with other factors, e.g. whether a day is a holiday or
weekend. The behavior of the mass during weekends or holidays in a certain season of the year could
still impact the heat consumption.

As a proof of our claim that the model in our proposed method learns the complex non-linear relation
among heat consumption, weather and day of week or public holiday, Figure[5]depicts the relationship
among these factors and their impact on predicted heat consumption in zone 2, over the span of
one week. The decreasing trend in feel-like temperature caused the decrease in true and predicted
consumption from 14th to 16th February. Even though the weather constituted an increasing trend
during the beginning of weekend, i.e. 17th February, the true and predicted heat consumption
remained more or less same as it was on 15th February. It could be inferred that people in this region
of Denmark during winter time tend to stay at home, yielding a rise to heat consumption which
should have been lower as the feel-like temperature increased.
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