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Abstract

In efforts to mitigate the adverse effects of climate change, policymakers have set
ambitious goals to reduce the carbon footprint of all sectors - including the electric
grid. To facilitate this, sustainable energy systems like renewable generation must
be deployed at high numbers throughout the grid. As these are highly variable in na-
ture, the grid must be closely monitored so that system operators will have elevated
situational awareness and can execute timely actions to maintain stable grid opera-
tions. With the widespread deployment of sensors like phasor measurement units
(PMUs), an abundance of data is available for conducting accurate state estimation.
However, due to the cyber-physical nature of the power grid, measurement data
can be perturbed in an adversarial manner to enforce incorrect decision-making. In
this paper, we propose a novel reconstruction method that leverages on machine
learning constructs like CGAN and gradient search to recover the original states
when subjected to adversarial perturbations. Experimental studies conducted on the
practical IEEE 118-bus benchmark power system show that the proposed method
can reduce errors due to perturbation by large margins (i.e. up to 100%).

1 Introduction

Climate change concerns are instigating major transformations in the way the modern power grid
operates (1). These include the widespread integration of renewable generation systems, electric
vehicles and storage systems along with ubiquitous connectivity enabled by information and commu-
nication technologies (ICTs) (2) (3) (4). Although sustainable power entities are highly variable in
nature (e.g. generation by renewables), with the aid of ICTs, system operators will have real-time
monitoring and actuation capabilities for maintaining stable grid operations. However, the ICTs are
associated with inherent communication and/or software vulnerabilities that can be leveraged by
adversaries to mislead system operators in making incorrect decisions and the triggering of control
systems that can lead to cascading outages in the grid (5) (6).

Adversarial attacks on real power grids have taken place and these have been reported to have inflicted
extensive losses and damages to the affected parties. For instance, cyber-attacks perpetuated in
Ukraine in 2015 (7) and Venezuela in 2019 (8) resulted in extended power losses that lasted for
days and affected hundreds of thousands of consumers. Another example is the security breach that
occurred in Iran in 2011 (9). The Stuxnet worm was utilized to infiltrate Siemen’s SIMATIC winCC
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monitoring and data acquisition systems and inflict costly damages to nuclear centrifuges of power
generation systems in Iran. During this period, this worm was estimated to have infected 60% of PCs
in Iran. Hence, cybersecurity is an important consideration for the smooth operation of the electric
grid especially with the proliferation of low-carbon technologies. As such, one common mode of
attack is false data injection (FDI) where sensor measurements generated by phasor measurement
units (PMUs) are perturbed. When these measurements are utilized to estimate grid states, incorrect
values will be produced (9). Although mechanisms for detecting these perturbations have been built
into traditional state estimation processes (e.g. residual based techniques (10)), a seminal work
published in reference (11) demonstrated that stealthy attacks leveraging on the null-space of the
transformation from measurements to states can bypass these safeguards. There have been many
advances in FDI attacks henceforth that aim to stealthily affect grid states so that incorrect control
actions can be taken (12).

As such, one important line of work that will reduce the impact of FDI attacks is the partial or full
recovery of the original grid states when measurements are subjected to adversarial perturbations
(e.g. (13)). The main issue with these is that details of the grid topology is necessary for the recovery
process. This is confidential information that can result in dire consequences if leaked to adversarial
entities. With our proposal in this paper, our contributions are: 1) We leverage a cycle GAN (CGAN)
model that captures the non-linear mappings of grid measurements to states and vice versa for
detecting specific perturbed measurements; 2) We utilize the gradients computed using the trained
model to iteratively recover the perturbed measurements; and 3) We demonstrate the efficacy of the
proposed reconstruction method on a benchmark IEEE 118 bus system.

2 Methodology

We utilize CGAN (14) which is a generative machine learning model to learn the forward mapping G
between grid measurements y and states x and reverse mapping H vice versa.

y = G(x), x = H(y)

The general architecture of CGAN is illustrated in Fig. 1. The CGAN is composed of two GANs -
one for each direction of mapping. GANs are generally composed of a discriminator and generator.
The two generators in the CGAN aims to learn G and H respectively while the discriminators Dy

and Dx aim to distinguish whether its inputs are from the actual training datasets or synthesized by
its generator pair. For brevity, we assume that the trained CGAN model is already available.

Figure 1: General architecture of CGAN.

We will utilize the discriminator Dy corresponding to the generator G to identify specific measure-
ments that are perturbed. After training, the discriminator will output a probability lower than 0.5 if it
deems its input (i.e. measurements) synthetic (i.e. perturbed). If this is the case, then, it is concluded
that the measurements have been perturbed. To identify specific components of the residual that have
been corrupt, the following residual vector is first calculated:

r = |y −G(H(y))|
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If a component of the r vector is greater than the positive threshold α, then this component is flagged
as perturbed. This is repeated for all components of the vector r. Once the perturbed components are
all flagged, then just the perturbed components of y are updated in an iterative manner. To derive
these updates, first the optimization problem Perr is formulated.

Perr : min
y
||y −G(H(y))||22

where G and H are mappings that are already trained in the CGAN and ||.||2 is the second norm.
Perr aims to minimize the error or the gap between the measurement and the forward and reverse
transformation of y. The main idea here is that when the measurements are not perturbed, this error
will be close to 0 when the mappings G and H have been trained until the training errors are low.
When there are perturbations, the measurements will deviate from the original distribution of the grid
actual measurements. This will lead to large gaps in the forward and reverse mappings. Hence, the
goal of the reconstruction process is to minimize the objective outlined in POPF . Directly solving
this problem is not straightforward asG andH are complex neural networks (architecture is presented
in the Appendix).

To solve this problem, we utilize a gradient descent based approach, where the gradient of the
objective function which will be referred to as f(y) is first computed using the chain rule.

∂f

∂y
& = −2 ·

(
y −G(H(y)

)(
1− ∂G(H(y))

∂H(y)

∂H(y)

∂y

)
The measurement vector is updated as follows based on the slightly modified gradient derived from
empirical experiments:

yt+1 = yt − 2β sgn
(
yt −mt

)∂f(yt)
∂y

where t is the current iteration of update, mt is the median value of that measurement in the training
dataset and sgn is the sign function. All measurements that are not perturbed are replaced in this
updated measurement vector. This process is repeated until the stopping condition is met. In this
paper, the stopping condition is selected to be the upper limit T imposed on the number of iterations as
information on the ground truth is not available during the reconstruction process. There is definitely
room for improvement with the stopping condition and this will be discussed in detail in the next
section. This algorithm is summarized in Alg. 1.

Algorithm 1 Reconstruction Algorithm
if Dy < 0.5 then

for every attacked element of measurement (i.e. r > α) do
t← 0
for t ≤ T do

Compute H(y), G(H(y)) and ∂f(yt)
∂y

yt+1 = yt − 2β sgn
(
yt −mt

)
∂f(yt)

∂y

Replace perturbed components of y0 with the corresponding columns of yt
yt+1 ← y0
t← t+ 1

end for
end for

end if

With the proposed algorithm, it is clear that only information regarding the trained CGAN model is
used to compute the reconstruction of the perturbed elements of the measurement vector. Furthermore,
H and G capture the non-linear mappings between the measurements and states. Thus, the residual
test will not be subjected to the same issues identified in reference (11) (i.e. attack perturbations that
exist in the null-space).

3 Experiment

In this section, the performance of the proposed reconstruction algorithm of perturbed measurements
is evaluated. The CGAN is trained to conduct state estimation in the benchmark IEEE 118 bus system.
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Perturbations are added to randomly selected measurements. The perturbations can be as high as
±10% of the original values. Smaller perturbations are harder to detect and thus are utilized in these
experiments to evaluate the discerning ability of the discriminator.

As such, the discriminatorDy is able to identify measurements that are perturbed with 100% accuracy.
The residual limit selected is α = 0.988. With this residual, the compromised components are also
identified with 100% accuracy. Next, in Fig. 2, the evolution of the following two metrics are plotted
over the update iterations t = 0 to t = T .

GHY = ||Y −G(H(y))||22
GT = ||Y −GT ||22

The x-axis in this figure reflects the iteration number and y-axis represents the norm of error. In these
results, 9 measurements were randomly selected and perturbed within ±10%. It is clear that the

Figure 2: G(H(y)) and GT error for two different cases.

gap between the ground truth and the reconstructed measurement vectors are decreasing in general
throughout the iterative update process. It is clear that the general trends of GHY and GT are similar.
Since GT is not known during the reconstruction process, the minimum value of GHY can be used
as the stopping criteria. However, as GHY is not a non-increasing function, more analysis is required
and this will be our future work. Fig. 3 illustrates the evolution of GT for every perturbed component.

Figure 3: Component-wise ground truth error.

It is clear that the error mostly follows decreasing trends. One or two components are displaying
increasing trends. Specifically, the norm of error is decreasing in both examples and the error from
gt is reaching to zero for some components. Further analysis of the gradients associated with every
component can reveal insights into this behaviour that can be utilized to prevent this trend. This is
also future work.

4 Conclusion

In this paper, we have proposed a novel reconstruction algorithm for grid measurements that have been
subjected to adversarial perturbations by leveraging on machine learning and iterative optimization
constructs. The effectiveness of the proposed algorithm has been demonstrated for a practical IEEE
118 bus system. As future work, we intend to investigate how a good stopping criteria can be designed
for the iterative updating algorithm so that the reconstructed grid measurement vector is as close as
possible to ground truth. With detection and mitigation algorithms like this in place, the power grid
can continue to accommodate highly variable green energy systems in a seamless manner even when
subjected to adversarial interactions.
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Appendix

4.1 Datasets

This recovery scheme is studied on the data generated for the IEEE 118-bus system (15). Gradients
and chain rule has been computed in the TensorFlow (16) environment with implementation of tf.tape.
The training and testing datasets have been generated using the Pandapower(17) module in Python.

4.2 CGAN Architecture

Here, the parameters of the CGAN model implemented in TensorFlow are presented for the various
modules:

Grid State Generator Neural Network - H

Nodes &
Input: 759
L1:512, L2:1024, L3:2048, L4:1024, L5:512
Output: 235

Activation & relu, relu, relu, relu, relu, tanh
Grid State Discriminator Neural Network- Dx

Nodes &
Input: 235
L1:512, L2:1024, L3:256, L4:64
Output: 1

Activation & relu, relu, relu, relu, sigmoid
Grid Measurement Generator Neural Network - G

Nodes &
Input: 235
L1:512, L2:1024, L3:2048, L4:1024, L5:512
Output: 759

Activation & relu, relu, relu, relu, relu, tanh
Grid Measurement Discriminator Neural Network- Dy

Nodes &
Input: 759
L1:512, L2:1024, L3:256, L4:64
Output: 1

Activation & relu, relu, relu, relu, sigmoid
Table 1: Cycle GAN architecture.
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4.3 Selection of α

For the selection of α, the f1-score is utilized. The following figure illustrates how the threshold and
F1 are related. The threshold that results in the highest FI score is selected as α.

Figure 4: F1 score of tampered data detection

4.4 Selection of β

Next, we demonstrate the impact of β on the reconstruction of perturbed measurements. β is a
learning parameter that can alter the convergence characteristics. If β is too small, the convergence
will be too slow. On the other hand, if it is too fast, then the reconstruction process will oscillate. The
following are some experimental examples of the impact of β.

Figure 5: Beta = 0.001
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Figure 6: Beta = 0.0005

Figure 7: Beta = 0.0001
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