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Abstract

Accurate electrical load forecasts of buildings are needed to optimize local energy
storage and to make use of demand-side flexibility. We study the usage of Trans-
former neural networks for short-term electrical load forecasting of 296 buildings
from a public dataset. Transformer neural networks trained on many buildings
give the best forecasts on 115 buildings, and multi-layer perceptrons trained on a
single building are better on 161 buildings. In addition, we evaluate the models
on buildings that were not used for training, and find that Transformer neural net-
works generalize better than multi-layer perceptrons and our statistical baselines.
This shows that the usage of Transformer neural networks for building load fore-
casting could reduce training resources due to the good generalization to unseen
buildings, and they could be useful for cold-start scenarios.

1 Introduction

An increasing amount of buildings is equipped with photovoltaic modules and local batteries or
flexible devices like electric vehicle chargers and heat pumps. Photovoltaic feed-in limits can result
in curtailment of solar energy. To avoid curtailment, optimal building control strategies make use
of flexible consumption or local battery storage, in order to consume most of the generated energy
locally [1]. Such control algorithms require short-term building load forecasts to create a dispatch
plan for the next hours.

Transformer neural networks [2] are state of the art in many natural language processing tasks, and
promising for time-series forecasting. Our paper studies the usage of Transformer neural networks
for forecasting the electrical load of buildings. The training of such models consumes energy and
thereby causes carbon emissions. We therefore study whether models trained on a subset of the
buildings generalize to unseen buildings. This would reduce the overall energy consumption and
carbon emissions of the training, since training models for every building could be avoided. It is
also a requirement for cold-start applications, where no training data is available for a building.

2 Related work

González Ordiano et al. [3] give an overview on existing energy time-series forecasting methods,
including linear regression and multi-layer perceptrons, which we use as baseline methods (see
Section 5.3). Haben et al. [4] review applications and methods for low-voltage level forecasting,
but do not cover Transformer neural networks, which were applied to time-series forecasting [5–9]
and electrical load forecasting [10–16] only recently. Li et al. [7] investigate Transformer neural
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networks for multiple forecasting tasks, including the dataset that we use, but only evaluate models
trained on the data from all buildings, whereas we also train models for individual buildings. Zeng
et al. [17] question whether Transformer neural networks are effective for time series forecasting
and show that they are often outperformed by a one-layer linear model.

3 Task definition

We address the following electrical load forecasting problem: At a time step t, given a building’s
hourly electrical load of the previous k time steps x(t−k+1):t = (xt−k+1, ..., xt), m covariate se-
quences zj(t−k+1):t, and n a priori known covariate sequences zl(t+1):(t+τ), the goal is to predict the
next τ electrical load values x(t+1):(t+τ). We use one week’s values as input (i.e. k = 168), and a
forecasting horizon of τ = 24 hours. We use the following time and calendar features as covariates:
hour of the day, day of the week, month (all sine- and cosine-encoded), whether the day is a work-
day, whether the day is a holiday, whether the previous day is a workday, whether the next day is a
workday, and whether the day is in Christmas time from December 24th to 27th (all binary).

4 Approach

We use the time-series Transformer [6] architecture for our models. An overview of the architecture
is shown in Figure 1. It consists of an encoder part and a decoder part, described next.

The input to the encoder is a sequence of 168 vectors, one for each hour of the preceding week.
Each vector contains 12 entries: one for the electrical load and 11 for the time and calendar features
for this time step. Before feeding the vectors to the encoder, we run them through a linear layer with
dmodel = 160 units. The encoder consists of multiple layers with multi-head self-attention with
eight heads. Each encoder layer gets an input of shape 168× dmodel and produces an output of the
same shape.

The input to the decoder contains the vectors for the last 24 time steps and the next 24 time steps.
The electrical load for the next 24 time steps is unknown at prediction time and therefore set to
zero. The vectors are also run through a linear layer to increase the vector size to dmodel = 160.
The decoder consists of multiple layers. Each decoder layer attends to the outputs of the previous
layer with multi-head self-attention with eight heads. Masking prevents the self-attention to attend
to outputs that correspond to future time steps. In addition, each decoder layer attends to the outputs
of the last encoder layer with multi-head cross-attention with eight heads. The last 24 outputs of the
decoder, which correspond to the 24 future time steps, are fed into a linear layer with a single unit.
This results in 24 predictions for the next 24 hours.

This architecture outperformed the statistical baselines, a linear regression model and MLPs of dif-
ferent sizes in previous experiments on forecasting the aggregated electrical load of the German state
Baden-Württemberg for long prediction horizons [16], and we now test it on the more volatile elec-
trical load of individual buildings. We test Transformer neural networks with one to three encoder
and decoder layers, and choose the model with the best result on the validation period.

5 Experiments

5.1 Dataset

We use a public dataset from the UCI Machine Learning Repository for our experiments.1 The
dataset contains electrical load time series in kW for 370 clients in Portugal. We manually removed
buildings whose time series looked erroneous, synthetic or had lots of missing data. After this step,
296 buildings remained in the dataset. The time series range from 2011 to 2014, with a time reso-
lution of 15 minutes, which we transform to hourly resolution by averaging every four consecutive
values. For some clients the first values are missing, which results in shorter time series. We use
the last six months from the dataset (July to December 2014) as test period, the six months before
as validation period (January to June 2014), and the remaining as training period. To evaluate on
buildings that were not used for training, which we call the unseen buildings, we perform a five-fold

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
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cross-validation. In every fold of the cross-validation, 80% of the buildings are used for training,
and 20% for testing. The validation is done on the validation period with the buildings used for
training. The data is standardized with the mean and standard deviation of the training data of each
model (the training data differs for local and global models, see Section 5).

5.2 Baselines

Persistence: This baseline predicts the same value as was observed one week ago. We also tested it
with the value of a day ago, and one week was better.

Weekly profile: We compute a weekly profile by averaging the electrical load of each hour of the
week across the training data. This results in 168 averaged values, one for each hour of the week,
which are used as predictions.

Linear regression: The third baseline is a multi-output linear regression model [18]. It gets the last
168 values of the electrical load time series as input, together with the 11 time and calendar features
for the first hour to predict, and predicts the following 24 electrical load values.

Random forest regression: The random forest regression [19] models consist of 100 trees with a
maximum depth of 10. The input and output is the same as for the linear regression models.

Multi-layer perceptron: The multi-layer perceptron (MLPs) [18] uses the same inputs as the linear
regression and random forest regression models. The MLP consist of two hidden layers with ReLU
activation [20], and an output layer with linear activation with 24 units for the 24 predicted values.
We compare MLPs with between 256 and 2048 units per hidden layer and choose the MLP with the
best result on the validation period.

5.3 Local and global models

We distinguish between models trained on the time series from a single building, which we call
local models, and models trained on the time series from all buildings, which we call global models.
Local models are only evaluated on the building they were trained on.

All neural networks are trained with the AdamW [21] optimizer with batch size 128, an initial
learning rate of 0.0005 which gets reduced by 90% every two epochs, and early stopping with a
patience of five epochs. Training was done on a NVIDIA GeForce 2080 Ti GPU.

5.4 Metric

To evaluate our models, we compute the normalized mean absolute error (NMAE) on each building.
The NMAE is the mean absolute error (MAE) divided by the mean observed value. For every hour
i in the test set, we have two vectors ŷi ∈ R24 and yi ∈ R24, containing the predicted and actual
electrical load for the next 24 hours. The NMAE is computed as

NMAE (y, ŷ) =

∑n
i=1

∑24
j=1 |yi,j − ŷi,j |
n · 24

· 1
ȳ
,

where n is the number hours in the test set, and ȳ the mean observed electrical load for the building
during the test period. The NMAE values of the global models are averaged across all buildings.
For the local models, we average the NMAE values of all local models evaluated on the building
they were trained on (evaluations are done on the test period, which was not used for training).

5.5 Results

Table 1 shows the results of the different models, separately evaluated on the buildings in the training
set and the unseen buildings in the generalization set. Figure 2 shows a bar plot of the NMAE results.
The local models have a better NMAE than their global counterparts, except for the Transformer
neural networks, where the global model is better than the local models. The local MLP has the
lowest NMAE, followed by the local linear regression and the global Transformer neural network.
No single model is best on all buildings. The local MLP is the best model on the majority of
the buildings, and the global Transformer neural network is best on more than one third of the
buildings. The global Transformer neural network has the lowest NMAE among the global models
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Table 1: Results on buildings that were seen during training and buildings that were not seen during
training, evaluated on the test period. The normalized mean absolute error (NMAE) is averaged
across the buildings. ”#best” indicates on how many buildings a model is the overall best model,
best global model and best local model. Training times of the local models are summed up for all
buildings.

Method Seen buildings Unseen buildings Training
NMAE #best #best #best NMAE #best time

[%] overall local global [%] overall [minutes]
Persistence 10.41 3 6 - 10.41 24 -
Weekly profile 18.28 0 0 - - - -
Linear regression local 8.04 4 14 - - - 1.0
Random forest local 9.23 0 0 - - - 81.4
MLP local 7.15 161 264 - - - 29.6
Transformer local 8.30 11 12 - - - 454.5
Linear regression global 13.44 1 - 3 13.41 6 1.2
Random forest global 21.29 0 - 0 22.22 0 186.2
MLP global 8.57 1 - 54 8.60 48 21.2
Transformer global 8.10 115 - 239 8.53 218 338.3

both on buildings seen during training and on unseen buildings, but the difference to the global MLP
is small. The Transformer neural network is the best global model on 80% of the buildings seen
during training and the best model on 73% of the unseen buildings. However, the global MLP is
better on more buildings during the validation period (see Table 2).

6 Conclusion and future work

We found that Transformer neural networks generalize well to unseen buildings during the six-
months test period, and therefore could be used to build generally applicable forecasting models for
household demand. Transformer neural networks are promising for cold-start scenarios, where little
or no training data is available for a building, and for scenarios where training separate models for
all buildings is not feasible. However, we also found that the Transformer neural networks need
more time to train than the MLPs.

There are buildings where the local MLP is the best model, and others where the global Transformer
neural network is the best. In the future, we want to characterize buildings for which the Transformer
neural networks are the best model, and give advice to practitioners on when to use which model.

We see room for improved forecasts. External features such as weather data, other Transformer
architectures [5, 7–9, 14] and data augmentation [22] could improve the results. Another possible
improvement is to make use of dependencies between buildings, e.g. with transfer learning [23], by
clustering similar buildings [24], or by using the time series of other buildings as covariates.

In the future, the carbon emissions from training and using a model should be evaluated and com-
pared with the potential benefit of more accurate forecasts.
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Appendix

A Transformer neural network architecture

linear layer with 160 units
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Figure 1: Data flow in the Transformer neural network. The architecture consists of an encoder part
(left-hand side) and a decoder part (right-hand side). The input vectors to the encoder are shown
in blue, and the output of the encoder in red. The decoder receives vectors for the previous day
(orange) and next day (brown). Each decoder layer attends to the encoder output (red) with multi-
head cross-attention (arrows from left to right). Additionally, each encoder and decoder layer attends
to its inputs with multi-head self-attention (not shown in the figure). The decoder output (purple)
corresponding to the next day is fed through a linear layer to compute the predicted electrical load
(green).
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B Bar plots

Figure 2: NMAE on the seen buildings (left) and unseen buildings (right).

C Validation results

Table 2: Results on the validation period.

Method Seen buildings Unseen buildings
NMAE #best #best #best NMAE #best

[%] overall local global [%] overall
Persistence 12.90 0 1 - 12.90 6
Weekly profile 19.71 0 0 - - -
Linear regression local 8.82 10 21 - - -
Random forest local 10.03 0 0 - - -
MLP local 7.97 220 263 - - -
Transformer local 9.07 10 11 - - -
Linear regression global 12.97 1 - 4 12.86 15
Random forest global 21.60 0 - 0 22.94 0
MLP global 8.88 23 - 199 9.02 176
Transformer global 9.26 32 - 93 10.10 99
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