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Abstract

The increasing intensity and frequency of floods is one of the many consequences
of our changing climate. In this work, we explore ML techniques that improve the
flood detection module of an operational early flood warning system. Our method
exploits an unlabelled dataset of paired multi-spectral and Synthetic Aperture Radar
(SAR) imagery to reduce the labeling requirements of a purely supervised learning
method. Past attempts have used such unlabelled data by creating weak labels out
of them, but end up learning the label mistakes in those weak labels. Motivated
by knowledge distillation and semi supervised learning, we explore the use of a
teacher to train a student with the help of a small hand labeled dataset and a large
unlabelled dataset. Unlike the conventional self distillation setup, we propose a
cross modal distillation framework that transfers supervision from a teacher trained
on richer modality (multi-spectral images) to a student model trained on SAR
imagery. The trained models are then tested on the Sen1Floods11 dataset. Our
model outperforms the Sen1Floods11 SAR baselines by an absolute margin of
4.15% pixel wise Intersection-over-Union (IoU) on the test split.

1 Introduction

Floods are one of the major natural disasters, exacerbated by climate change, affecting between
85 million to 250 million people annually and causing between $32 to $36 billion in economic
damages [14}[11]]. Some of these harms can be alleviated by providing early flood warnings, so that
people can take proactive measures such as planned evacuation, move assets such as food and cattle
and use sandbags for protection. One of the important user experience elements for an effective
warning system is its overall accuracy, as false alerts lead to eroded trust in the system. Our work
contributes towards improving the accuracy of flood warning systems such as [24], by increasing
the accuracy of the inundation module. The inundation model in [24] learns a mapping between
historical river water gauge levels and the corresponding flooded area which can be leveraged to
predict future flooding extent based on forecast of the future river water gauge level. The accuracy
of these forecasts is directly correlated with the accuracy of the underlying historical segmentation
maps, hence we aim to improve the segmentation module through our contributions in this work.

In recent years, remote sensing technology has considerably improved and provided high resolution
spatial and temporal satellite data. Sentinel-1 [30] and Sentinel-2 [[10] satellites are commonly used to
map the water surface because they provide open access to high spatial and temporal resolution data.
Although Sentinel-2 is better for water segmentation as it shows high water absorption capacity in
short wave infrared spectral range (SWIR) and near infrared (NIR) spectrum, it cannot penetrate cloud
cover. This limits its application for mapping historical floods as cloud cover is highly correlated
with flooding events. On the other hand, radar pulses readily penetrate clouds, making SAR satellites
well suited for flood mapping [28} 22} 31]].

Thresholding algorithms [20, 21} |6] are traditionally used to segment flooded regions from SAR
images because of low back scatter intensity of water. Though techniques like Otsu thresholding [4]
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work well for many cases, its failure modes include generating false positives for mountain shadows
and generating excessive background noise due to speckle in SAR imagery. In recent years, Convolu-
tional Neural Networks (CNN) have been used to segment flooded areas from satellite images. Unlike
traditional pixel-wise methods, they can look at a larger context and incorporate spatial features
from an image. A lot of work has focused on using opportunistically available cloud free Sentinel-2
images [23} [1]]. Though these methods have good performance, their utility at inference time is
limited because of the cloud cover issues mentioned above. Another line of work fuses Sentinel-1
and Sentinel-2 images [19} 9, |29/ 3] to enhance surface water detection during flooded events. These
methods not only a require a cloud free Sentinel-2 image, but also require that both images are taken
at about the same time to avoid alignment issues. There has been some work done that uses multi
temporal images [33}127,132] containing a pre-flood and a post-flood event. These methods can do
change detection and exhibit better performance. In our work however, we focus on methods that
only take a single Sentinel-1 timestamp image as input.

Sen1Floods11 [3]] is a publicly available dataset with a small set of high quality hand labeled images
and a larger set of weak labeled images. Most of the prior work that uses a single Sentinel-1 image
as input [5,[12} [18l [16]], used this weak labeled data to train their models. However, the limitation
of using weak labeled data (despite using various regularization techniques), is that the model still
learns the mistakes in those labels. Motivated by the semi-supervised methods in [25] and cross
modal feature distillation [15]], we use a teacher student setup that extracts information from a more
informative modality (Sentinel-2) to supervise paired Sentinel-1 SAR images with the help of a
small hand labeled and a large unlabelled data set. Similar to [[15], we transfer supervision between
different modalities. However, instead of supervising an intermediate feature layer like [[15], we
transfer supervision at the outputs. Our main contribution in this work are:

e We curate an additional large dataset (in addition to Sen1Floods11) from various flooding
events containing paired Sentinel-1 and Sentinel-2 images and a weak label based on
Sentinel-2 data.

e We propose a cross modal distillation framework and apply it for transfer supervision
between different modalities using paired unlabelled data.

2 Datasets
2.1 Inputimagery

Sentinel-1 image: Sentinel-1 [30] is an active remote sensing SAR satellite. We use the bands
that consist of dual polarized data: Vertical Transmit-Vertical Receive (VV) and Vertical Transmit-
Horizontal Receive (VH). These bands represent the log of the backscatter coefficient and are
discriminative for detecting surface water as water reflects away all the emitted radiation from the
satellite. The wavelength used for imaging is able to see through cloud cover.

Sentinel-2 image: Sentinel-2 [[10] is a passive remote sensing satellite operating in visible and
infrared wavelength. Its images are affected by atmospheric conditions and often contain significant
cloud cover. In this work we use 4 bands: B2 (Blue), B3 (Green), B4 (Red) and B8 (NIR).

2.2 Datasets

Sen1Floods11 dataset: This is is a publicly available dataset [5], containing 4831 tiles from 11
flooding events across 6 continents. It contains paired Sentinel-1 SAR and Sentinel-2 multi-spectral
image. Each image is 512x512 pixels at a resolution of 10m per pixel. All images are scaled to 16m
per pixel input resolution and projected using to Universal Transverse Mercator (UTM) coordinate
system. Due to the high cost of labeling, only 446 images out of 4831 are hand labeled by remote
sensing experts to provide a good quality flood water labels. The authors provide an IID split of these
hand labeled images, containing 252 training, 89 validation, and 90 test samples. The remaining
4,385 images have weak labels made by thresholding NDVI (Normalized Difference Vegetation
Index) and MNDWI (Modified Normalized Difference Water Index) values. These weak labels are
only used for training as they are not accurate enough to be used in validation or test.

External dataset (ED): We curated additional imagery by downloading closely acquired Sentinel-1
and Sentinel-2 images from Earth Engine [[13] during flood events. An event is considered a flood if
the river gauge measurement exceed the official warning level (data made available to us by external



partners). We first search for a Sentinel-1 image that overlaps the flooding event duration. We then
searched for Sentinel-2 images within 12hrs of Sentinel-1 timestamp and filtered only those that had
less than 12% cloud cover (if no such image is found, then the data point was discarded). The data
points were extracted from Bangladesh, Brazil, Colombia, India and Peru. These regions were chosen
as they are also the regions of interest for final deployment. We also created a weak label for each
image using the Normalized Difference Water Index (NDWI) band from the Sentinel-2 image. In
total 23,260 image tiles of size 320 x 320, at a pixel resolution of 16m per pixel were created.

3 Methods

Our aim us to segment the flooded pixels using Sentinel-1 SAR image as an input. Formally, let
Xs1 € RTXWX2 be SAR input space and let Y € RT*WXK denote the pixel wise K class one
hot label in the output space. Here, K = 2 as it contains 2 classes: dry and wet pixels. The
paired Sentinel-2 image in training data is represented by Xgo € R7*Wx4  The hand labeled

training set is denoted by D; = { X%, X§,, Yi}N’ and the larger weak labeled training set as

D, l {X 515 Xio, Y’} Mol Here Y denotes a high quality label and ¥ denotes a noisy weak
label. Our goal is to leverage both D; and D, to train the segmentation network. The next section
describes the supervised baseline followed by a cross modal distillation framework.

3.1 Supervised baseline

We train two supervised models for comparison. The first model is trained only on hand labeled data
D;. The second model is trained only on the larger weak labeled dataset D,,;, so that the network can
generalize and avoid memorizing the label errors [26]. We use Deeplab v3+ [7] with an Xception 65
encoder [8] as the model architecture. Common regularization techniques like data augmentations
(random crop with distortion, horizontal/vertical flips and colour jitter), dropout, weight decay and
batch normalization are used to improve generalization. The network is trained to minimize the cross
entropy loss. We apply edge based weighting to the cross entropy loss, which gives higher weights to
the inner and outer edges of the binary label.

3.2 Cross modal distillation

In a cross modal distillation framework, the aim is to transfer supervision between two modalities. In
our setup, a teacher is trained on stacked Sentinel-1 and Sentinel-2 images using D;, and is used to
supervise a Sentinel-1 only student model on the unlabelled dataset. The advantage of this method
over binary weak labels is that the soft labels predicted by the teacher capture uncertainty better
compared to the binary labels [2}[17]. Also compared to self distillation, cross modal distillation
enables us to provide more accurate supervision by transferring information from a richer knowledge
modality. Figure[I]summarizes the training setup used in our work. Both the teacher and the student
have an exactly same architecture backbone. Let f; and f, represent the teacher and student network
function respectively. The training is done in two stages as described below.

Stage 1: Training the teacher network Let X &1.4 g denote the stacked Sentinel-1 and Sentinel-2
image. Xg;, g, € D; is used as input to the teacher network. The teacher is trained in the same
manner as the supervised baseline described in Section 3.1} The training set is small but contains
data from geographic locations spanning 6 different continents. This helps the teacher generalize
well to different geographies in the unlabelled data seen during the next stage of training.

Stage 2: Training the student network The teacher weights from Stage 1 are kept frozen in this
stage. We use paired Sentinel-1 and Sentinel-2 images from Senl1Floods11 hand labeled and ED
weak labeled data as the unlabelled data to train the student network. The SenlFloodsl1 weak
labeled data is not used as the paired Sentinel-2 images were not provided in the dataset. The data in
each batch is sampled equally from both the data sources to ensure equal weighting for the datasets.
The stacked Sentinel-1 and Sentinel-2 image X%, 152 18 passed through the teacher to obtain the

probabilities p; = o(f;(X%, g5)) and the augmented paired Sentinel-1 image X%, = Aug(X%;)
is passed through the student to get the student probabilities ps = o(fs(X%,)). KL divergence loss
(L k p) is then minimized for K = 2 classes to update the student weights: Lxp = — ZLK=1 pi log ps

**Paired Sentinel-2 images are only available for ED weak labeled dataset and are unavailable for
SenlFloods11 weak labeled daaset.
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Figure 1: Overview of our cross modal distillation framework. During training a teacher model
using Sentinel-1 and Sentinel-2 images is used to train a student using only the Sentinel-1 image. At
inference time, only the student is used to make predictions.

4 Results

We use pixel-wise mean intersection over union (IoU) of the water class to validate our model
performance. Figure[2]shows a qualitative comparison and Table[T|provides a quantitative comparison
on SenlFloods11 test split.

In Table [T]first two rows, it can be seen that

Method IoU a model trained on large set of Sentinel-2
Otsu Thresholding 54.58 weak label can match the performance of a
Hand labeled supervised 67.63 & 0.45 model trained on small set of hand labeled
Weak labeled supervised: data. This empirically verifies the claim
T 67.76 £2.41 that a large weak labeled dataset can act

SenlFloods11 weak - )
) as a quick substitute for a small amount
Weak labeled supervised: o\ 1 4 14 of costly hand label annotations. Includ-
SenlFloods11 + ED weak ’ ' ing ED weak labeled data to Sen1Floods11
Cross modal distillation 71.91 4 0.41 weak labeled data, further led to an in-

crease in the model performance by 1.18%
from SenlFloods11 weak label baseline.
This shows that there were still more gains
to be had by increasing the weak label
dataset size. Our cross distillation model
performs better than all the models and ex-
ceeds Sen1Floods11 hand label baseline by
4.28% ToU and Sen1Floods11 weak label baseline by 4.15% IoU.

For comparison, we also report the performance of just the teacher model. The teacher model uses
stacked Sentinel-1 and Sentinel-2 inputs and has a IoU of 79.25 £ 1.07 on the test set. As expected, it
is much higher than the Sentinel-1 supervised hand label model mentioned above because Sentinel-2
image is a richer modality, but not suitable for inference because of cloud cover issues in Section [2.1]

Table 1: Result of Sentinel-1 supervised baseline mod-
els and our cross modal distillation framework on
SenlFloods11 handlabel test split. The numbers show
the aggregated mean and standard deviation of IoU from
5 runs.

5 Conclusion

We proposed a simple cross modal distillation framework to effectively leverage large amounts of
unlabeled and paired satellite data and a limited amount of high quality hand labeled data. We distill
knowledge from a teacher trained on the hand labeled images using the more informative modality as
input. This helped us generate more accurate labels for the student network as compared to weak
labels created by a simple thresholding technique. The student network trained this way outperforms
both the supervised hand label and weak label baselines. A promising avenue for future research
would be to include temporal imagery to improve performance.
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A Data pre-processing

For Sentinel-1 image normalization, we first clip the VV band from [-20, 0] and VH from [-30, 0]
and then linearly scaled these values to the range [0,1]. For Sentinel-2 image, we clipped the 4 bands
from [0, 3000] range and then linearly scaled them to [0, 1] range.

B Training details

For all the models, we use Deeplab v3+ model [[7] with Xception 65 [8] as the backbone encoder. The
skip connection from the encoder features to the decoder is applied at stride 4 and 2. We use a batch
size of 64 with input image shape of (321,321, C) (here C' = 2 for Sentinel-1 images and C' = 4 for
Sentinel-2 images). For optimization, Momentum optimizer is used with momentum set to 0.9. The
learning rate is decayed with a polynomial schedule from initial value to zero with a power of 0.9.
The models are trained for 30k steps. A learning rate and weight decay grid search hyperparameter
tuning is done by choosing a learning rate from {0.3, 0.1, 0.003, 0.001} and weight decay from {1e-3,
le-4, le-5, 1le-6}. All the hyperparameter tuning and best model checkpoint selection is then done on
the validation split. After the best checkpoint selection, the model is frozen and all the results are
reported on the test split.

C Qualitative results
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Figure 2: Model inference comparison on Sen1Floods11 handlabel test split. In the output predictions
dry pixels are shown in green, water pixels in blue and invalid pixels in black. The ground truth
is labeled on the Sentinel-2 image and can contain clouds which are masked in white color. It can
be seen that cross modal distillation produces sharper and more accurate results. Weak labeled
supervised baseline on the other hand sometimes misses big parts of river due to mistakes learnt from
the training data.
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