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Abstract

The challenge that climate change poses to humanity has spurred a rapidly develop-
ing field of artificial intelligence research focused on climate change applications.
The climate change ML (CCML) community works on a diverse, challenging
set of problems which often involve physics-constrained ML or heterogeneous
spatiotemporal data. It would be desirable to use automated machine learning
(AutoML) techniques to automatically find high-performing architectures and
hyperparameters for a given dataset. In this work, we benchmark popular Au-
toML libraries on three high-leverage CCML applications: climate modeling, wind
power forecasting, and catalyst discovery. We find that out-of-the-box AutoML
libraries currently fail to meaningfully surpass the performance of human-designed
CCML models. However, we also identify a few key weaknesses, which stem
from the fact that most AutoML techniques are tailored to computer vision and
NLP applications. For example, while dozens of search spaces have been de-
signed for image and language data, none have been designed for spatiotempo-
ral data. Addressing these key weaknesses can lead to the discovery of novel
architectures that yield substantial performance gains across numerous CCML
applications. Therefore, we present a call to action to the AutoML community,
since there are a number of concrete, promising directions for future work in the
space of AutoML for CCML. We release our code and a list of resources at https:
//github.com/climate-change-automl/climate-change-automl.

1 Introduction

There is an increasing body of evidence which shows that climate change is one of the biggest
threats facing humanity today [3, 7, 33, 39]. Taking action towards climate change must come in
many forms, such as reducing greenhouse gases and facilitating the adaption of renewable energy. A
rapidly developing area of artificial intelligence research, climate change ML (CCML), is focused on
applications to address climate change [11, 26, 38].

On the other hand, the automated machine learning (AutoML) community has been focused on
designing efficient algorithms for problems such as hyperparameter optimization (HPO) and neural
architecture search (NAS) [22]. In general, the goal of AutoML is to develop algorithms that
automate the process of designing architectures and tuning hyperparameters for a given dataset.
Although AutoML would seemingly be most useful on understudied datasets where there is less
human intuition [36, 47], most AutoML techniques, whether implicitly or explicitly, are tailored to
CV and NLP tasks. Furthermore, a few recent works show that state-of-the-art AutoML techniques
for common CV-based tasks do not transfer to other non-CV tasks [32, 47]. A natural question is
therefore, are AutoML techniques beneficial for high-impact CCML applications?
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Figure 1: Overview of the main components of our study.

In this work, we benchmark popular AutoML libraries on three high-leverage CCML tasks: climate
modeling, wind power forecasting, and catalyst discovery (see Fig. 1). We find that AutoML
techniques currently do not work out of the box on these tasks, failing to meaningfully surpass
the performance of human-designed models. At the same time, we identify concrete weaknesses
stemming from the fact that AutoML techniques have not been designed for common CCML
themes such as spatiotemporal data or physics-constrained ML. For example, designing a search
space which interpolates among MLPs, CNNs, GNNs, and GCNs (all of which have been used for
climate modeling [5, 6, 31, 34]) would allow NAS algorithms to discover novel combinations of
existing architecture components, potentially leading to substantial performance gains across several
spatiotemporal forecasting applications. Thus, we give a call to action to the AutoML community,
with the aim of leveraging the full power of AutoML on challenging, high-impact CCML tasks.

Related work. In recent years, several techniques have been developed for atmospheric radiative
transfer [4, 6, 35, 48], wind power forecasting [10, 49], catalyst prediction [9, 28, 46], and many
more areas [24, 25, 50]. For a survey of machine learning tasks in the climate change space, see [38].

HPO [17] and NAS [16] are two popular areas of AutoML [22]. Recently, Tu et al. introduced
NAS-Bench-360 [47], a benchmark suite to evaluate NAS methods on a diverse set of understudied
tasks, in order to help move the field of NAS away from its emphasis on CV and NLP. Across ten
tasks, Tu et al. showed that current state-of-the-art NAS methods do not perform well on diverse tasks.
Another recent work similarly showed that the best techniques and hyperparameters on CV-based
tasks do not transfer to more diverse tasks [32]. However, for both of these works, the analyses used
a few fixed search spaces rather than identifying models hand-designed specifically for each task.

2 Methodology

In this section, we describe our methodology, driven by the following two research questions:

• RQ 1: Can current out-of-the-box AutoML techniques substantially improve performance
compared to human-designed models in high-leverage climate-relevant applications?

• RQ 2: If not, then what are the key limitations and weaknesses of existing techniques?

In order to answer RQ 1, we select datasets which (1) correspond to impactful directions in climate
change research, and (2) have existing strong human-designed baselines. For example, we choose
datasets which were recently featured in large competitions, with top solutions now open-source. We
describe the details of each dataset in Section 3.

For each of the datasets we choose, we first find open-source high-performing human-designed
models. Then we run Optuna [1] or SMAC3 [30], two of the most widely used AutoML libraries
today, using top human-designed models as the base. We compare the resulting searched models to
top human-designed models.

In order to answer RQ 2, we check for general weaknesses in AutoML techniques applied to CCML
tasks, which can be overcome with future work. For example, we look at whether the AutoML
techniques are limited due to being implicitly tailored to CV tasks.
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3 Experiments and Discussion

In this section, for three CCML tasks, we give a brief description of the task, dataset, and our AutoML
experiments. Then, in Section 3.2, we use our experiments to answer RQ 1 and RQ 2.

3.1 Experimental Setup

Atmospheric Radiative Transfer. Numerical weather prediction models, as well as global and
regional climate models, give crucial information to policymakers and the public about the impact of
changes in the Earth’s climate. The bottleneck is atmospheric radiative transfer (ART) calculations,
which are used to compute the heating rate of any given layer of the atmosphere. While ART has
historically been calculated using computationally intensive physics simulations, researchers have
recently used neural networks to substantially reduce the computational bottleneck, enabling ART to
be run at finer resolutions and obtaining better overall predictions.

We use the ClimART dataset [6] from the NeurIPS Datasets and Benchmarks Track 2021. It consists
of global snapshots of the atmosphere across a discretization of latitude, longitude, atmospheric
height, and time from 1979 to 2014. Each datapoint contains measurements of temperature, water
vapor, and aerosols. Prior work has tested MLPs, CNNs, GNNs, and GCNs as baselines [6].

We run HPO on the CNN baseline from Cachay et al. [6] using the Optuna library [1]. The CNN
model is chosen because it had the lowest RMSE and second-lowest latency out of all five baselines
from Cachay et al. We tune learning rate, weight decay, dropout, and batch size. We also run NAS
using SMAC3 [30]. We set a categorical hyperparameter to choose among MLP, CNN, GNN, GCN,
and L-GCN [5] while also tuning learning rate and batch size. See Appendix B.1 for more details of
the dataset and experiments.

Wind Power Forecasting. Wind power is one of the leading renewable energy types, since it is
cheap, efficient, and harmless to the environment [2, 19, 40]. The only major downside in wind
power is its unreliablility: changes in wind speed and direction make the energy gained from wind
power inconsistent. In order to keep the balance of energy generation and consumption on the power
grid, other sources of energy must be added on short notice when wind power is down, which is not
always possible (for example, coal plants take at least 6 hours to start up) [20]. Therefore, forecasting
wind power is an important problem that must be solved to facilitate greater adoption of wind power.

We use the SDWPF (Spatial Dynamic Wind Power Forecasting) dataset, which was recently featured
in a KDD Cup 2022 competition that included 2490 participants [49]. This is by far the largest wind
power forecasting dataset, consisting of data from 134 wind turbines across 12 months. The features
consist of external features such as wind speed, wind direction, and temperature, and turbine features
such as pitch angle of the blades, operating status, relative location, and elevation.

We use a BERT-based model [44], and a GRU+LGBoost model [29], which placed 3rd and 7th in the
competition out of 2490, respectively (and are 1st and 3rd among open-source models, respectively).
We run HPO using Optuna for both the BERT-based model and the GRU+LGBoost model, and we
also run NAS on the BERT-based model. For additional details, see Appendix B.2.

Open Catalyst Project. Discovering new catalysts is key to cost-effective chemical reactions to
address the problem of energy storage, which is necessitated by the intermittency of power generation
from growing renewable sources, such as wind and solar. Catalyst discovery is also important for
more efficient production of ammonia fertilizer, which currently makes up 1% of the world’s CO2

emissions [21]. Modern methods for catalyst design use a simulation via density functional theory
(DFT), which can be approximated with deep learning. Specifically, given a set of atomic positions
for the reactants and catalyst, the energy of the structure can be predicted.

We use the Open Catalyst 2020 (OC20) dataset [8], which was featured in a NeurIPS 2021 competition
[9]. Each datapoint is one reaction, where the features consist of the initial starting positions of the
atoms, and the label consists of the energy needed to drive the reaction. In our experiments, we use a
downsampled version of the OC20 IS2RE out-of-distribution adsorbates task, using 59 904 examples.

We use Graphormer [42], the winning solution from the NeurIPS 2021 Open Catalyst Challenge,
developed by a team at Microsoft. We run Optuna on the learning rate, number of warmup steps,
number of layers, attention heads, and blocks. See Appendix B.3 for additional details.
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Dataset Type Base Model Metric Perf. human Perf. AutoML improv. % search time
ClimART NAS Various RMSE (W/m2) 1.829 1.669 8.7% 12 GPU hrs
ClimART HPO CNN RMSE (W/m2) 1.829 1.538 15.9% 54 GPU hrs
SDWPF NAS BERT-based RMSE+MAE (kW) 45.246 45.178 0.15% 26 GPU hrs
SDWPF HPO BERT-based RMSE+MAE (kW) 45.246 45.329 -0.08%∗ 42 GPU hrs
SDWPF HPO GRU+GBDT RMSE+MAE (kW) 45.074 45.074 0% 50 GPU hrs
OC20 HPO Graphormer MAE (eV) 0.399 0.396 0.65% 24 GPU hrs

Table 1: Empirical comparison between human-designed models and AutoML searched models. In
the ‘Perf. AutoML’ column, we report the test set performance of the model with the best validation
set performance during the AutoML search (∗ which may be worse than the original model, if the
validation set performance is higher but the test set performance is lower).

3.2 Results and Discussion

See Table 1 for results and percentage improvement by running AutoML. Despite running for 10-50
hours on each task, the AutoML techniques did not meaningfully improve performance compared to
the best human-designed model, with the exception of ClimART. However, for ClimART, we were
unable to reproduce the originally reported RMSE of the CNN model [6] with the default parameters,
and so the AutoML performance is compared to our own (worse) evaluation of the default model.
Overall, although our experiments are not comprehensive, we find no indication that RQ 1 is true; in
other words, out-of-the-box AutoML techniques currently may not be able to substantially improve
upon human-designed CCML models. We emphasize that our experiments were aimed specifically at
evaluating AutoML methods out-of-the-box. For a discussion of limitations, see Appendix B.

We find that a key weakness of current AutoML methods is that the search spaces are designed for
common tasks such as CV and NLP. For example, ClimART could benefit from search spaces that
interpolate among MLPs, CNNs, GNNs, and GCNs, which do not currently exist. In general, many
CCML applications would benefit from search spaces designed specifically to handle spatiotemporal
forecasting tasks, both two-dimensional [23, 37, 49, 50] and three-dimensional [6, 31]. Furthermore,
many CCML applications have physics constraints in some form [6, 9, 14, 15]. For example, ART
and catalyst prediction follow the physics of thermodynamics. Architectures which incorporate
physics constraints, and loss terms with several hyperparameters, are two common methods for
handling physics constraints [27], and using AutoML to search for the best architecture and loss
function is a promising area for future work. Therefore, our answer to RQ 2 is that search spaces
are currently focused on CV tasks, and designing search spaces for spatiotemporal forecasting and
physics constraints would be particularly beneficial across CCML applications.

4 Conclusions and Future Work

In this work, we benchmarked popular AutoML libraries on datasets for climate modeling, wind
power forecasting, and catalyst discovery, and we were unable to show that out-of-the-box AutoML
libraries substantially improve over human-designed models.

There are many concrete, promising avenues for future work. First and foremost, designing search
spaces for spatiotemporal forecasting and physics constraints, as mentioned in Section 3.2, would be
particularly beneficial across many CCML applications. Next, while our work focused on HPO and
NAS, there are still many other sub-areas of AutoML, such as data augmentation, data preprocessing,
and continuous monitoring and maintenance of deployed models. Finally, while our work focused on
three high-impact datasets, there are many other CCML applications for which AutoML could be
tested, such as model predictive control for buildings [12, 13] and optimal power flow [18]. However,
researchers must be careful to also consider the large carbon footprint caused by AutoML experiments
[41, 45]. For a longer discussion on the broader impact of our work, see Appendix A.
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[13] Ján Drgoňa, Damien Picard, Michal Kvasnica, and Lieve Helsen. Approximate model predictive
building control via machine learning. Applied Energy, 218:199–216, 2018.

[14] Ján Drgona, Aaron R Tuor, Vikas Chandan, and Draguna L Vrabie. Physics-constrained deep
recurrent neural models of building thermal dynamics. Technical report, Pacific Northwest
National Lab.(PNNL), Richland, WA (United States), 2020.
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A Broader Impact

Our goal in this work is to give evidence that current out-of-the-box AutoML techniques do not
perform sufficiently on high-impact CCML applications, and then give a call to action to the AutoML
community by identifying several concrete areas for future work. The successes would be for (1)
AutoML researchers to design and test their methods on CCML tasks, and (2) CCML practitioners to
use (future) AutoML tools to make progress in their respective domains.

Although automated machine learning is a powerful tool to make progress on climate change problems,
the surprisingly large carbon footprint and financial cost of training machine learning models must
be weighed [41, 45]. While we strongly believe that the AutoML community heeding our call to
action will have a net positive impact on society, we urge AutoML researchers to conduct research in
a responsible and climate-conscious manner, using the suggestions laid out by Tornede et al. [45].

B Details from Section 3

In this section, we give details from the experiments in Section 3. We also note that although we
ran AutoML techniques across three different CCML tasks, our experiments should not be seen as
a comprehensive evaluation of AutoML methods on CCML tasks. In particular, our experiments
come with the limitations that only one trial was run per experiment (due to the a single run taking
up to 50 GPU hours) and although we made reasonable choices for the AutoML methods (based on
popularity) and hyperparameter ranges (based on default values), we did not run an exhaustive search
across AutoML methods and hyperparameters.

Furthermore, we explicitly aimed to test AutoML performance out-of-the-box, and we therefore did
not spend the time to carefully design tailored search spaces to the tasks at hand, which would be
non-trivial (e.g., see [36]). However, we discuss this as a very promising area for future work in
Sections 3.2 and 4.

B.1 ClimART

First, we give additional details about ClimART and the corresponding experiments.

ClimART. The ClimART dataset [6] consists of data that is simulated from CanESM5 [43]. This
dataset takes global snapshots of the atmosphere split into a 128× 64 latitude-longitude grid, every
205 hours from 1979 to 2014. Each datapoint is a “column” of the atmosphere at a specific time, with
measurements of temperature, water vapor, and aerosols taken at 49 different heights. Each column
also has global properties, such as optical and geographical information. Prior work has tested MLPs,
CNNs, GNNs, and GCNs as baselines [6].

B.1.1 SMAC3 details

We use data from years 1990, 1999, and 2003 for training, and data from 2005 for validation, to
match the setting of the benchmark experiments in the original ClimART paper [6]. Each model is
trained for 5 epochs and validated. Hyperparameters for each model are set according to the original
configurations provided by ClimART authors. We use a hyperparameter search space as follows:

• Unif{MLP, CNN, GNN, GCN, L-GCN}
• log10 (learning rate): Unif[−5,−1]

• log10 (weight decay): Unif[−7,−4]

B.1.2 Optuna Details

We use a hyperparameter search space as follows:
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• log10 (learning rate): Unif[−5,−1]

• log10 (weight decay): Unif[−7,−4]

• dropout: Unif[0.0, 0.8]
• batch size: 2**int(Unif[7.0, 9.0])

Learning rate Weight decay Dropout Batch size Test RMSE
36 trials/
20 epochs 1.43e-4 2.14e-5 0.0 256 1.538

24 trials/
10 epochs 4.12e-4 1.96e-5 0.001 256 2.344

original 2e-4 1e-6 0.0 128 1.829

Table 2: Searched hyperparameters and performance comparison with original configuration.

We ran Optuna by training each architecture to 10 epochs during the search, and training each
architecture to 20 epochs during the search. The best model according to validation accuracy is fully
trained to 100 epochs and then the test accuracy is compared to the original (default) model (also
fully trained to 100 epochs).

B.2 SDWPF

Next, we give details of the SDWPF dataset and experiments.

SDWPF. The SDWPF (Spatial Dynamic Wind Power Forecasting) dataset was recently featured
in a KDD Cup 2022 competition that included 2490 participants [49].2 This is by far the largest
wind power forecasting dataset, consisting of data from 134 wind turbines across 12 months, with
data sampled every 10 minutes. The features consist of external features such as wind speed, wind
direction, temperature, and turbine features such as nacelle direction, pitch angle of the blades,
operating status, relative location, and elevation. The problem is to predict the generated power for
all 134 turbines every 10 minutes in a 48 hour time window.

We ran hyperparameter optimization over the BERT-based model with batch size and learning rate
using Optuna. Due to computational constraints, we ran the search over 25% of the data and then
trained the best model according to the validation set with the whole data.

We use a hyperparameter search space as follows:

• log10 (learning rate): Unif[−7,−1]

• batch size: 2**int(Unif[5.0, 10.0])
• Feed Forward Network dropout: Unif[0.0, 0.5]
• Attention dropout: Unif[0.0, 0.5]

Learning rate Batch size Test Score
70 trials/
50% data 4.7e-3 512 -45.329

original 5e-3 1024 -45.246

Table 3: Searched hyperparameters via HPO and performance comparison with original configuration
on SDWPF.

2https://aistudio.baidu.com/aistudio/competition/detail/152
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Next, we ran neural architecture search on the same BERT-based architecture, using 50% of the data.
The search space is as follows:

• No. of BERT Blocks {1,2,4}

• No. of heads in attention model {1,2,4}

• Attention dropout inside BERT block Unif[0.0,0.4]

• Feed Forward Network dropout inside BERT block Unif[0.0,0.4]

• Filter sizes inside BERT Block {8,16,32,64,128}

num blocks num heads attention dropout ffn dropout Test Score
40 trials/
50% data 1 1 0.224 0.097 -45.178

original 1 1 0.0 0.0 -45.246

Table 4: Searched model parameters via NAS and performance comparison with the original configu-
ration on SDWPF.

Finally, we ran HPO on the GRU+LGBoost algorithm. We used the following hyperparameter search
space:

• No. of numeric embedding dimension: int(Unif[32,64])

• No. of time embedding dimension: int(Unif[4,8])

• No. of ID embedding dimension: int(Unif[4,8])

• No of GRU hidden units: int(Unif[32,64])

• log10 (Learning rate): Unif([-6,-2])

And the hyperparameter search space for the LGBoost model is as follows:

• No. of leaves: int(Unif[2,128])

• Bagging frequency: int(Unif[1,7])

• Bagging fraction: Unif[0.4,1]

• Feature fraction: Unif[0.4,1]

• Learning rate : Unif[0.001,0.7]

num_sz time_sz id_sz hiden GRU_lr Test Score
20 GRU trials +
50 LGBoost trials 51 4 4 64 0.009538 -45.074

original 51 4 4 64 0.009538 -45.074

Table 5: Searched GRU model parameters and performance comparison with original configuration
on SDWPF.

num_lv bag_freq bag_frac feat_frac LGBoost_lr Test Score
20 GRU trials +
50 LGBoost trials 128 5 0.998798 0.428377 0.00342 -45.074

original 128 5 0.998798 0.428377 0.00342 -45.074

Table 6: Searched LGBoost model parameters for a sample LightGBM model and performance
comparison with original configuration on SDWPF.

B.3 OC20

Finally, we give the details of the OC20 dataset and experiments.
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OC20. The Open Catalyst 2020 (OC20) dataset [8] was featured in a NeurIPS 2021 competition
[9]. Each datapoint is one reaction, where the features consist of the initial starting positions of the
atoms, and the label consists of the energy needed to drive the reaction. There are over 100 million
examples in total in the original dataset. In our experiments, we use a down-sampled version of the
OC20 IS2RE task with 10 000 examples where we report test accuracy on out-of-domain adsorbates.

B.3.1 Optuna Details

We use the following hyperparameter search space:

• log10 (learning rate): Unif[−5,−3]

• log10 (warm-up steps): Unif[0, 4]
• layers: Unif[1, 12]
• attention heads: Unif[{6, 12, 24, 32, 48}]
• blocks: Unif[1, 4]

Learning rate Warm up steps Layers Attention heads Blocks Test MAE
36 trials/
4 epochs 2.9e-4 133 9 32 1 0.396

original 3e-4 100 12 48 4 0.399

Table 7: Searched hyperparameters and performance comparison with original configuration on
OC20.

11


	Introduction
	Methodology
	Experiments and Discussion
	Experimental Setup
	Results and Discussion

	Conclusions and Future Work
	Broader Impact
	Details from Section 3
	ClimART
	SMAC3 details
	Optuna Details

	SDWPF
	OC20
	Optuna Details



