Bayesian inference for aerosol vertical profiles
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» Uncertainty in magnitude of forcing due to ACIs comes from:

1. Uncertainty in estimation of pre-industrial forcing
2. Uncertainty in estimation of present day forcing

» Uncertainty in present-day forcing due (in part) to difficulty to
get informative measurements of aerosol at global scale
— best we can do is AOD.

» AOD is a 2D quantity which does not inform about vertical
distribution of aerosols.

» Vertical distribution of aerosols changes magnitude and even
sign of the forcing .
Objective

Try to reconstruct aerosol vertical profiles using AOD
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Figure 1: Left: regional Malaria incidence rate; Center: Spatially
disaggregated mean Malaria incidence rate; Right: Standard deviation
over spatially disaggreagted rate; Law et al. [1].

ratcrc:gion = Aggregateregion {]'Ht(\/line—grid(xﬁne—grid)}

» Observations: rate,csion and Tane-grid

» Goal: Infer rateq,c..iq as a function of Tane-grid
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Disaggregating along a 3" dimension?
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H
Tcolumn = Aggregatecolumn {boxt} = / bcxt(h) dh
0

» Observations: 7., and x3p
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S—

» Use simple, readily available predictors such as pressure,
temperature, humidity — reanalysis data.

For example, for a given altitude h we can take

x = (t,lat,lon, P, T, RH) (1)

Objective
Using observations of AOD and vertically-resolved

meteorological predictors, we want to estimate aerosol extinction
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An idealized vertical prior
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» Idealized profiles assumed in remote sensing products
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Figure 2: Examples of idealized exponential vertical profiles
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An idealized vertical prior
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» Idealized profiles assumed in remote sensing products
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Figure 2: Examples of idealized exponential vertical profiles

» Rough approximation but captures a key structure: most
aerosol lie in boundary layer (< 2km)
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Weighting of the ideal prior

S—

» Propose to weight the idealized exponential profile with a
positive weight function w(z|h) > 0
p(|h) = w(z|h)e " (2)

» Capture finer details of variability putting more mass where
meteorological predictors suggest higher aerosol loading

Expect relationship between z|h and bext(h) to be non-trivial and
highly non-linear = learn the weighting w(x|h)
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Probabilistic modelling of the weight function 10

S—

» Lack of knowledge about influence of meteorological variables
— epistemic uncertainty

> Reflect this with Bayesian design of w(z|h)

w(z|h) = P(f(x|h)) (3)
f ~ GP(m, k) (4)
Y >0 (5)

» Simple choice 1) = exp

» ¢ o f describes expressive range of probability distribution over
complex positive functions

» Remains interpretable (kernel user-specified determines
covariance and functional smoothness)
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Normalized counts

Figure 3: Left: empirical distribution of AOD retrievals from AERONET
stations; Right: logspace version of left plot
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Figure 3: Left: empirical distribution of AOD retrievals from AERONET
stations; Right: logspace version of left plot

Assume log-normal model 7|y, o ~ LN (i, o).
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Connect with ¢(z|h) 13

S—

» Use mean reparametrization of LA (u, o).
n=E[LN (1, 0)] = e#+7 /2 =y = it /2

=1 o 02
= p=logn—+
0.2
= W(M,U) = ‘C/\[ (10g77_ 270)
Observation model
2
o~ o (1ogn - .0 ) )
H
n= /0 (alh) dh (7)

With multiple observations 71, ..., T, scale parameter ¢ > 0 assumed shared
among columns but 7 (or u) is column-specific.
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Model formulation for the i*® atmospheric column

Observation Model: N Observed AOD
o? LN Log-normal distribution
Tilni ~ LN (log =50 ) Ni, O Mean and scale parameters
H %) Prior for bext
= / o(x;|h) dh xi|h Input covariates at altitude h
0 H Atmospheric column height

P Positive link function
L Idealized heightscale parameter
f GP prior

Prior:

p(@ilh) = Y(f(zilh))e " *
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B——

Model formulation for the i*® atmospheric column

Observation Model: N Observed AOD
o? LN Log-normal distribution
Tilni ~ LN (log =50 ) Ni, O Mean and scale parameters
H %) Prior for bext
= / o(x;|h) dh xi|h Input covariates at altitude h
0 H Atmospheric column height
B P Positive link function
L Idealized heightscale parameter

o(@ilh) = $(f(zilh)e ™" f GP prior

» Objective: Infer distribution of p(z|h)| 11, ..., T
———

T




Inference

S—

> Actually... f(x|h)|T

> Access to posterior distribution p(f|) allows to compute
predictive mean and variance of ¢ at input x|h following

o(xz|h)|7] = /u) R Ly (f|7) df
Var(p(z|h)|7) = E[p(z|h)?|7] — E[p(z|h)|7]?

» Can be estimated with Monte-Carlo (and admits closed form for

Y = exp)

15




Infer p(f|T)? 16
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Problem
) — _2Crinp(0)
[ otz ar
| S —
intractable
Solution

> Approximate p(f|7) (variational approximation)

» Approximation scheme allows for sparse representation which
scales to very large number of data points
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ECHAM-HAM setup
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Name Notation Dimensions
Temperature T (t, lat, lon, lev)
Predictors Pressure P (t, lat, lon, lev)
Relative humidity RH (t, lat, lon, lev)
Vertical velocity w (t, lat, lon, lev)

Response  AOD 550nm T (t, lat, lon)
Groundtruth  Extinction coefficient 533nm Dext (t, lat, lon, lev)

Table 1: Gridded variables from ECHAM-HAM simulation data. The grid
includes 8 time steps (t), 96 latitude levels (lat), 192 longitude levels (lon)
and 31 vertical pressure levels (lev). Our objective is to vertically
disaggregate the response 7 using the vertically resolved predictors

(T, P,RH,w) and spatiotemporal columns locations (¢, lat, lon).

» Total of 8 x 96 x 192 = 147456 columns.
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Figure 4: Vertical slices at latitude 51.29° of meteorological predictors
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Figure 6 Vertical slices at latitude 51 20° of nrodicted nrafile
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Table 2: Scores of our method (Our) compared to an idealized exponential
baseline (Ideal)

Region Method RMSE (10°)  Corr (%) Bias (107%) Bias98 (107°)
Entire Our  3.2940.02  70.9+0.4 -0.167+0.105 -0.646+0.151
column Ideal 4.10 51.2 -2.40 -4.08
Boundary Our 6.061+0.03 69.8+0.5 -1.25+0.45 -4.64+0.32
Jayer Ideal 7.55 53.6 -12.9 L7

Region Method ELBO Calib95 (%)  ICI (1072)

Entire Our 13.140.1 94.940.1 5.2940.59

column Ideal 13.1 96.0 5.05

Boundary Ig)el;li loi%io.l 98983%5(’).1 8.2;;?.29

layer
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Figure 9: Density plots of groundtruth extinction coefficient values against
predicted posterior mean extinction coefficient; Left: entire column;
Right: boundary layer only
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Conclusion

Insights

» Possible to reconstruct realistic vertical extinction of aerosol with
sound uncertainty quantification using AOD and readily available
meteorological predictors

» Method is simple, computationally efficient, makes assumptions
explicit and as such grants control and intepretability

» Can benefit aerosol satellite products, leading to more accurate priors
over aerosol vertical profiles
Limitations and Directions

» Can only capture extinction due to aerosol swelling (missing mass
concentration, particle size and radiative properties extinction which
would require additional predictors harder to obtain)

» Methodological extensions (use multiple wavelengths, allow unmatched
data setting)

» Different use case: investigation on aerosol mode/species contribution
to extinction using model data only
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