

Bayesian inference for aerosol vertical profiles

Shahine Bouabid¹ Duncan Watson-Parris² Dino Sejdinovic¹

¹ Department of Statistics, University of Oxford

² Atmospheric, Oceanic and Planetary Physics, Department of Physics,
University of Oxford

This project receives funding from the European Union's Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement No 860100

Motivation

- ▶ Uncertainty in magnitude of forcing due to ACIs comes from:
 1. Uncertainty in estimation of pre-industrial forcing
 2. Uncertainty in estimation of present day forcing

- ▶ Uncertainty in magnitude of forcing due to ACIs comes from:
 1. Uncertainty in estimation of pre-industrial forcing
 2. **Uncertainty in estimation of present day forcing**

- ▶ Uncertainty in magnitude of forcing due to ACIs comes from:
 1. Uncertainty in estimation of pre-industrial forcing
 2. **Uncertainty in estimation of present day forcing**
- ▶ Uncertainty in present-day forcing due (in part) to **difficulty to get informative measurements of aerosol at global scale**

- ▶ Uncertainty in magnitude of forcing due to ACIs comes from:
 1. Uncertainty in estimation of pre-industrial forcing
 2. **Uncertainty in estimation of present day forcing**
- ▶ Uncertainty in present-day forcing due (in part) to **difficulty to get informative measurements of aerosol at global scale**
→ best we can do is AOD.

- ▶ Uncertainty in magnitude of forcing due to ACIs comes from:
 1. Uncertainty in estimation of pre-industrial forcing
 2. **Uncertainty in estimation of present day forcing**
- ▶ Uncertainty in present-day forcing due (in part) to **difficulty to get informative measurements of aerosol at global scale**
→ best we can do is AOD.
- ▶ AOD is a 2D quantity which does **not inform about vertical distribution of aerosols**.

- ▶ Uncertainty in magnitude of forcing due to ACIs comes from:
 1. Uncertainty in estimation of pre-industrial forcing
 2. **Uncertainty in estimation of present day forcing**
- ▶ Uncertainty in present-day forcing due (in part) to **difficulty to get informative measurements of aerosol at global scale**
→ best we can do is AOD.
- ▶ AOD is a 2D quantity which does **not inform about vertical distribution of aerosols**.
- ▶ Vertical distribution of aerosols **changes magnitude and even sign of the forcing** .

- ▶ Uncertainty in magnitude of forcing due to ACIs comes from:
 1. Uncertainty in estimation of pre-industrial forcing
 2. **Uncertainty in estimation of present day forcing**
- ▶ Uncertainty in present-day forcing due (in part) to **difficulty to get informative measurements of aerosol at global scale**
→ best we can do is AOD.
- ▶ AOD is a 2D quantity which does **not inform about vertical distribution of aerosols**.
- ▶ Vertical distribution of aerosols **changes magnitude and even sign of the forcing** .

Objective

Try to reconstruct aerosol vertical profiles using AOD

2D Spatial Disaggregation

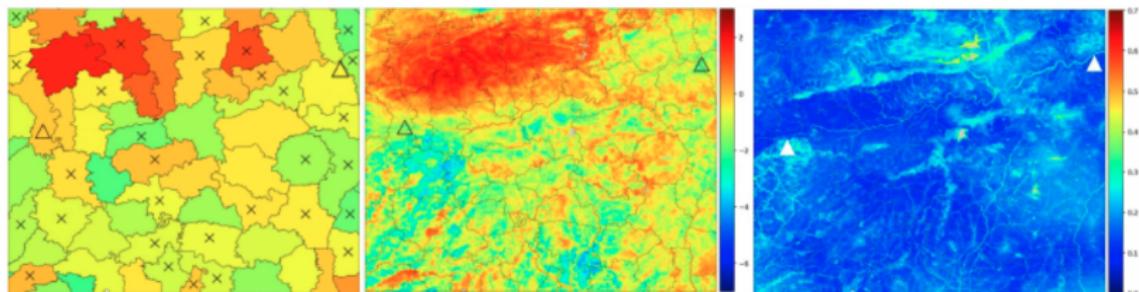


Figure 1: **Left:** regional Malaria incidence rate; **Center:** Spatially disaggregated mean Malaria incidence rate; **Right:** Standard deviation over spatially disaggregated rate; Law et al. [1].

2D Spatial Disaggregation

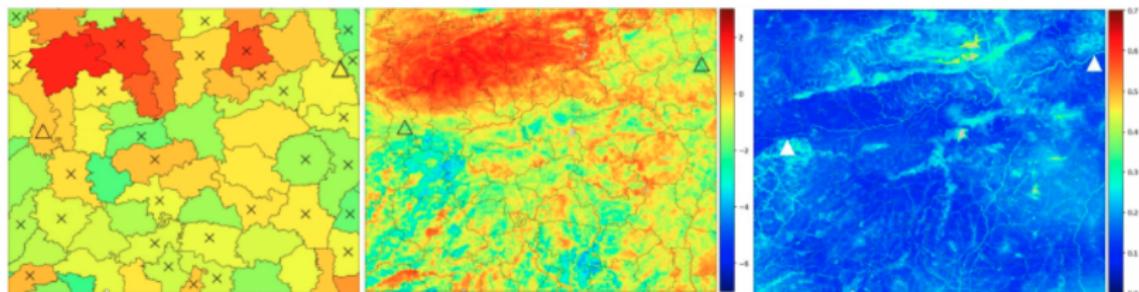


Figure 1: **Left:** regional Malaria incidence rate; **Center:** Spatially disaggregated mean Malaria incidence rate; **Right:** Standard deviation over spatially disaggregated rate; Law et al. [1].

$$\text{rate}_{\text{region}} = \text{Aggregate}_{\text{region}} \left\{ \text{rate}_{\text{fine-grid}}(x_{\text{fine-grid}}) \right\}$$

2D Spatial Disaggregation

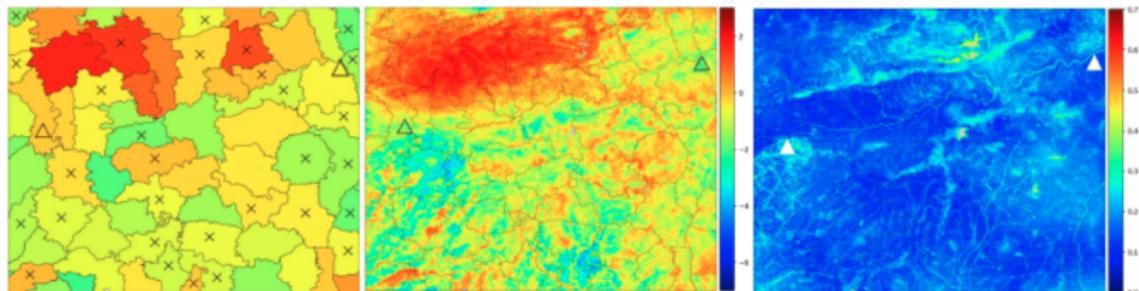


Figure 1: **Left:** regional Malaria incidence rate; **Center:** Spatially disaggregated mean Malaria incidence rate; **Right:** Standard deviation over spatially disaggregated rate; Law et al. [1].

$$\text{rate}_{\text{region}} = \text{Aggregate}_{\text{region}} \left\{ \text{rate}_{\text{fine-grid}}(x_{\text{fine-grid}}) \right\}$$

- **Observations:** $\text{rate}_{\text{region}}$ and $x_{\text{fine-grid}}$

2D Spatial Disaggregation

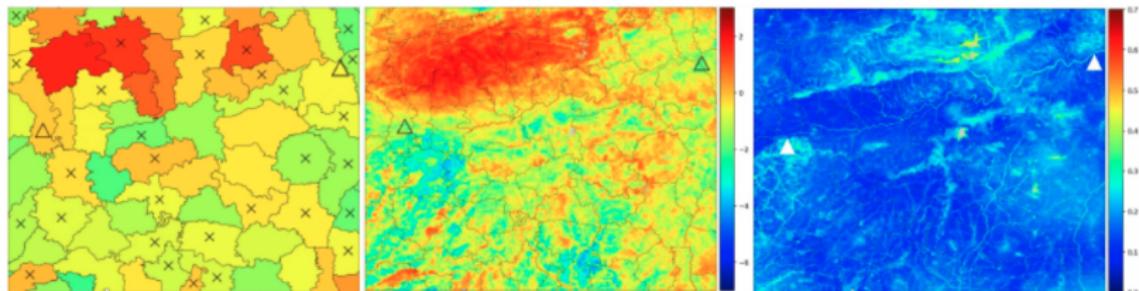
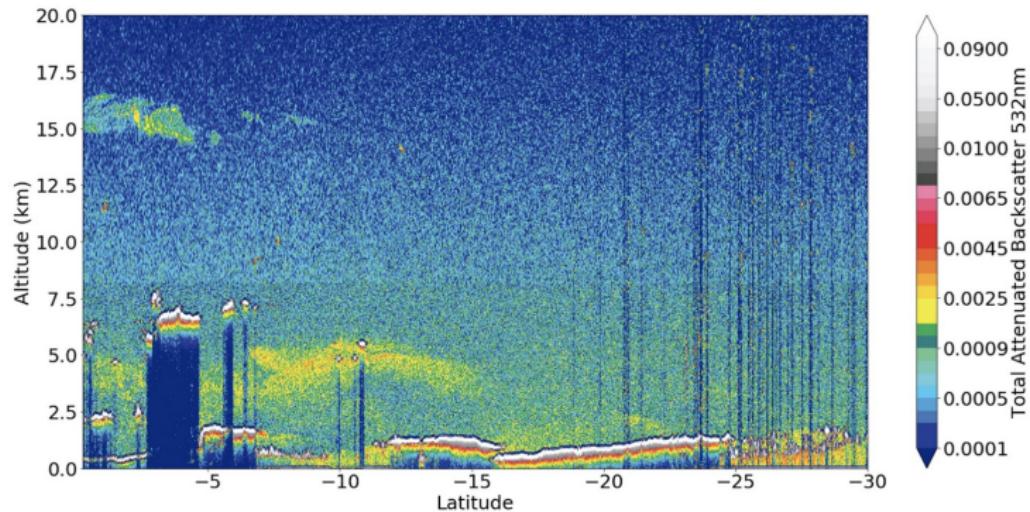


Figure 1: **Left:** regional Malaria incidence rate; **Center:** Spatially disaggregated mean Malaria incidence rate; **Right:** Standard deviation over spatially disaggregated rate; Law et al. [1].

$$\text{rate}_{\text{region}} = \text{Aggregate}_{\text{region}} \left\{ \text{rate}_{\text{fine-grid}}(x_{\text{fine-grid}}) \right\}$$

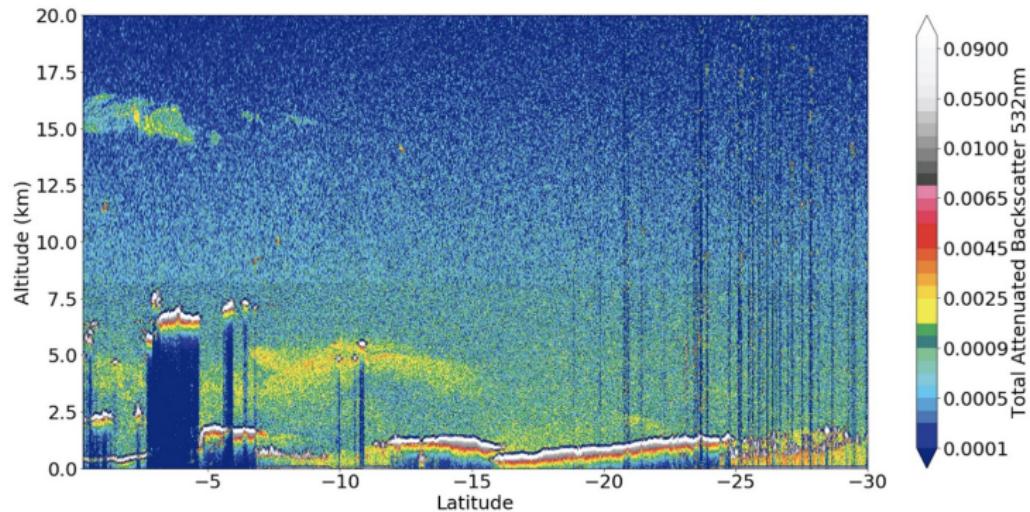
- ▶ **Observations:** $\text{rate}_{\text{region}}$ and $x_{\text{fine-grid}}$
- ▶ **Goal:** Infer $\text{rate}_{\text{fine-grid}}$ as a function of $x_{\text{fine-grid}}$

Disaggregating along a 3rd dimension?



$$\tau_{\text{column}} = \text{Aggregate}_{\text{column}} \{ b_{\text{ext}} \} = \int_0^H b_{\text{ext}}(h) \, dh$$

Disaggregating along a 3rd dimension?



$$\tau_{\text{column}} = \text{Aggregate}_{\text{column}} \{ b_{\text{ext}} \} = \int_0^H b_{\text{ext}}(h) \, dh$$

- **Observations:** τ_{column} and x_{3D}
- **Goal:** Infer b_{ext} as a function of x_{3D}

- ▶ Use **simple, readily available predictors** such as pressure, temperature, humidity → reanalysis data.

For example, for a given altitude h we can take

$$x = (t, \text{lat}, \text{lon}, P, T, \text{RH}) \quad (1)$$

- ▶ Use **simple, readily available predictors** such as pressure, temperature, humidity → reanalysis data.

For example, for a given altitude h we can take

$$x = (t, \text{lat}, \text{lon}, P, T, \text{RH}) \quad (1)$$

Objective

Using observations of AOD and vertically-resolved meteorological predictors, we want to estimate aerosol extinction

Design of a prior over b_{ext}

An idealized vertical prior

- Idealized profiles assumed in remote sensing products
 $b_{\text{ext}}(h) \propto e^{-h/L}$.

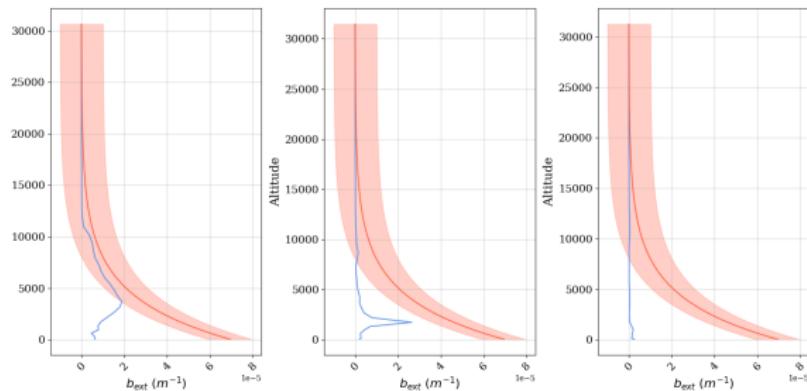


Figure 2: Examples of idealized exponential vertical profiles

An idealized vertical prior

- Idealized profiles assumed in remote sensing products
 $b_{\text{ext}}(h) \propto e^{-h/L}$.

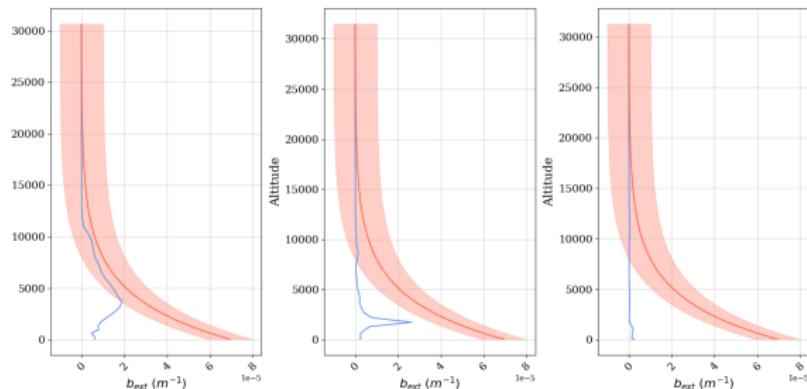


Figure 2: Examples of idealized exponential vertical profiles

- Rough approximation but captures a key structure: **most aerosol lie in *boundary layer* (< 2 km)**

- ▶ Propose to weight the idealized exponential profile with a positive weight function $w(x|h) > 0$

$$\varphi(x|h) = w(x|h)e^{-h/L} \quad (2)$$

- ▶ Propose to weight the idealized exponential profile with a positive weight function $w(x|h) > 0$

$$\varphi(x|h) = w(x|h)e^{-h/L} \quad (2)$$

- ▶ Capture finer details of variability **putting more mass where meteorological predictors suggest higher aerosol loading**

- ▶ Propose to weight the idealized exponential profile with a positive weight function $w(x|h) > 0$

$$\varphi(x|h) = w(x|h)e^{-h/L} \quad (2)$$

- ▶ Capture finer details of variability **putting more mass where meteorological predictors suggest higher aerosol loading**

Expect relationship between $x|h$ and $b_{\text{ext}}(h)$ to be non-trivial and highly non-linear \Rightarrow learn the weighting $w(x|h)$

- ▶ **Lack of knowledge** about influence of meteorological variables
→ epistemic uncertainty

- ▶ **Lack of knowledge** about influence of meteorological variables
→ epistemic uncertainty
- ▶ Reflect this with **Bayesian design** of $w(x|h)$

$$w(x|h) = \psi(f(x|h)) \quad (3)$$

$$f \sim \text{GP}(m, k) \quad (4)$$

$$\psi > 0 \quad (5)$$

- ▶ **Lack of knowledge** about influence of meteorological variables
→ epistemic uncertainty
- ▶ Reflect this with **Bayesian design** of $w(x|h)$

$$w(x|h) = \psi(f(x|h)) \quad (3)$$

$$f \sim \text{GP}(m, k) \quad (4)$$

$$\psi > 0 \quad (5)$$

- ▶ Simple choice $\psi = \exp$
- ▶ $\psi \circ f$ describes expressive range of probability distribution over complex positive functions
- ▶ Remains interpretable (kernel user-specified determines covariance and functional smoothness)

Connecting $\varphi(x|h)$ to observations

- ▶ We observe AOD $\tau \rightarrow$ ideally we want exactly $\tau = \int_0^H \varphi(x|h) dh$
- ▶ Unrealistic because observations are likely noisy

- ▶ We observe AOD $\tau \rightarrow$ ideally we want exactly $\tau = \int_0^H \varphi(x|h) dh$
- ▶ Unrealistic because observations are likely noisy

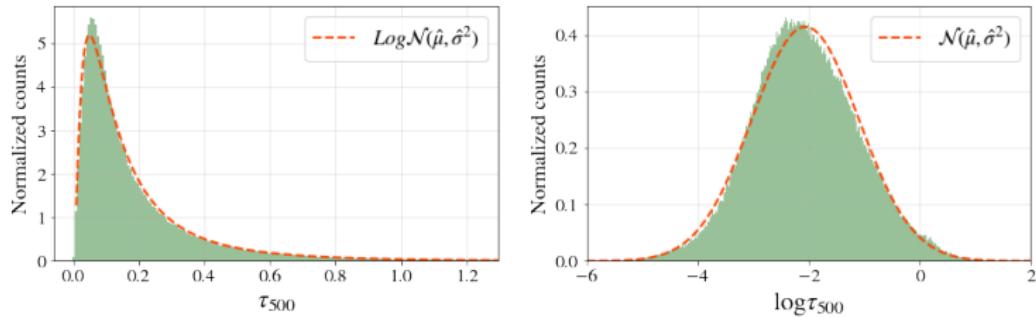


Figure 3: **Left:** empirical distribution of AOD retrievals from AERONET stations; **Right:** logspace version of left plot

- ▶ We observe AOD $\tau \rightarrow$ ideally we want exactly $\tau = \int_0^H \varphi(x|h) dh$
- ▶ Unrealistic because observations are likely noisy

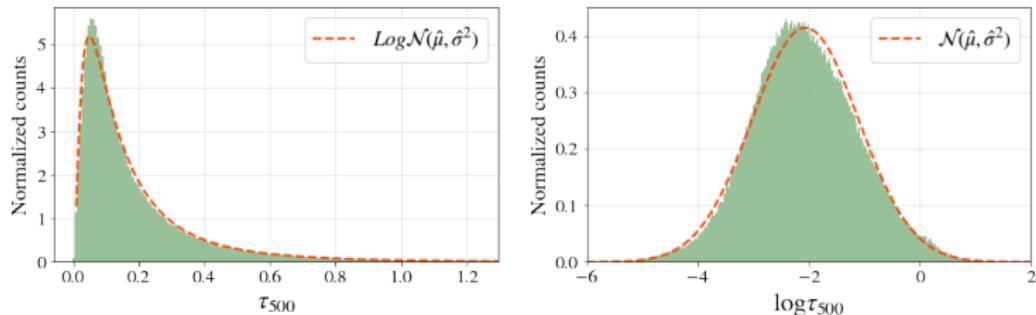


Figure 3: **Left:** empirical distribution of AOD retrievals from AERONET stations; **Right:** logspace version of left plot

Assume **log-normal** model $\tau|\mu, \sigma \sim \mathcal{LN}(\mu, \sigma)$.

- ▶ Use mean reparametrization of $\mathcal{LN}(\mu, \sigma)$.

- ▶ Use mean reparametrization of $\mathcal{LN}(\mu, \sigma)$.

$$\eta = \mathbb{E}[\mathcal{LN}(\mu, \sigma)] = e^{\mu + \sigma^2/2} \Rightarrow \eta = e^{\mu + \sigma^2/2}$$

- ▶ Use mean reparametrization of $\mathcal{LN}(\mu, \sigma)$.

$$\eta = \mathbb{E}[\mathcal{LN}(\mu, \sigma)] = e^{\mu + \sigma^2/2} \Rightarrow \eta = e^{\mu + \sigma^2/2}$$

$$\Rightarrow \mu = \log \eta - \frac{\sigma^2}{2}$$

- ▶ Use mean reparametrization of $\mathcal{LN}(\mu, \sigma)$.

$$\eta = \mathbb{E}[\mathcal{LN}(\mu, \sigma)] = e^{\mu + \sigma^2/2} \Rightarrow \eta = e^{\mu + \sigma^2/2}$$

$$\Rightarrow \mu = \log \eta - \frac{\sigma^2}{2}$$

$$\Rightarrow \mathcal{LN}(\mu, \sigma) = \mathcal{LN}\left(\log \eta - \frac{\sigma^2}{2}, \sigma\right)$$

- ▶ Use mean reparametrization of $\mathcal{LN}(\mu, \sigma)$.

$$\eta = \mathbb{E}[\mathcal{LN}(\mu, \sigma)] = e^{\mu + \sigma^2/2} \Rightarrow \eta = e^{\mu + \sigma^2/2}$$

$$\Rightarrow \mu = \log \eta - \frac{\sigma^2}{2}$$

$$\Rightarrow \mathcal{LN}(\mu, \sigma) = \mathcal{LN}\left(\log \eta - \frac{\sigma^2}{2}, \sigma\right)$$

- ▶ Use mean reparametrization of $\mathcal{LN}(\mu, \sigma)$.

$$\eta = \mathbb{E}[\mathcal{LN}(\mu, \sigma)] = e^{\mu + \sigma^2/2} \Rightarrow \eta = e^{\mu + \sigma^2/2}$$

$$\Rightarrow \mu = \log \eta - \frac{\sigma^2}{2}$$

$$\Rightarrow \mathcal{LN}(\mu, \sigma) = \mathcal{LN}\left(\log \eta - \frac{\sigma^2}{2}, \sigma\right)$$

Observation model

$$\tau|\eta \sim \mathcal{LN}\left(\log \eta - \frac{\sigma^2}{2}, \sigma\right) \quad (6)$$

$$\eta = \int_0^H \varphi(x|h) \, dh \quad (7)$$

With multiple observations τ_1, \dots, τ_n , scale parameter $\sigma > 0$ assumed shared among columns but η (or μ) is column-specific.

Model formulation for the i^{th} atmospheric column

Observation Model:

$$\tau_i | \eta_i \sim \mathcal{LN} \left(\log \eta_i - \frac{\sigma^2}{2}, \sigma \right)$$

$$\eta_i = \int_0^H \varphi(x_i | h) dh$$

Prior:

$$\varphi(x_i | h) = \psi(f(x_i | h)) e^{-h/L}$$

$$f \sim \text{GP}(m, k)$$

τ_i	Observed AOD
\mathcal{LN}	Log-normal distribution
η_i, σ	Mean and scale parameters
φ	Prior for b_{ext}
$x_i h$	Input covariates at altitude h
H	Atmospheric column height
ψ	Positive link function
L	Idealized heightscale parameter
f	GP prior

Model formulation for the i^{th} atmospheric column

Observation Model:

$$\tau_i | \eta_i \sim \mathcal{LN} \left(\log \eta_i - \frac{\sigma^2}{2}, \sigma \right)$$

$$\eta_i = \int_0^H \varphi(x_i|h) \, dh$$

Prior:

$$\varphi(x_i|h) = \psi(f(x_i|h)) e^{-h/L}$$

$$f \sim \text{GP}(m, k)$$

τ_i	Observed AOD
\mathcal{LN}	Log-normal distribution
η_i, σ	Mean and scale parameters
φ	Prior for b_{ext}
$x_i h$	Input covariates at altitude h
H	Atmospheric column height
ψ	Positive link function
L	Idealized heightscale parameter
f	GP prior

► **Objective:** Infer distribution of $\varphi(x|h) | \underbrace{\tau_1, \dots, \tau_n}_{\tau}$

- ▶ Actually... $f(x|h)|\tau$
- ▶ Access to posterior distribution $p(f|\tau)$ allows to compute predictive mean and variance of φ at input $x|h$ following

$$\mathbb{E}[\varphi(x|h)|\tau] = \int \psi(f) e^{-h/L} p(f|\tau) df$$

$$\text{Var}(\varphi(x|h)|\tau) = \mathbb{E}[\varphi(x|h)^2|\tau] - \mathbb{E}[\varphi(x|h)|\tau]^2$$

- ▶ Can be estimated with Monte-Carlo (and admits closed form for $\psi = \exp$)

Problem

$$p(f|\tau) = \frac{p(\tau|f)p(f)}{\underbrace{\int p(\tau|f)p(f) df}_{\text{intractable}}}$$

Solution

- ▶ Approximate $p(f|\tau)$ (variational approximation)
- ▶ Approximation scheme allows for **sparse representation** which **scales to very large number of data points**

Experiments

	Name	Notation	Dimensions
<i>Predictors</i>	Temperature	T	$(t, \text{lat}, \text{lon}, \text{lev})$
	Pressure	P	$(t, \text{lat}, \text{lon}, \text{lev})$
	Relative humidity	RH	$(t, \text{lat}, \text{lon}, \text{lev})$
	Vertical velocity	ω	$(t, \text{lat}, \text{lon}, \text{lev})$
<i>Response</i>	AOD 550nm	τ	$(t, \text{lat}, \text{lon})$
<i>Groundtruth</i>	Extinction coefficient 533nm	b_{ext}	$(t, \text{lat}, \text{lon}, \text{lev})$

Table 1: Gridded variables from ECHAM-HAM simulation data. The grid includes 8 time steps (t), 96 latitude levels (lat), 192 longitude levels (lon) and 31 vertical pressure levels (lev). Our objective is to vertically disaggregate the response τ using the vertically resolved predictors (T, P, RH, ω) and spatiotemporal columns locations ($t, \text{lat}, \text{lon}$).

- Total of $8 \times 96 \times 192 = 147\,456$ columns.

Predictors slices

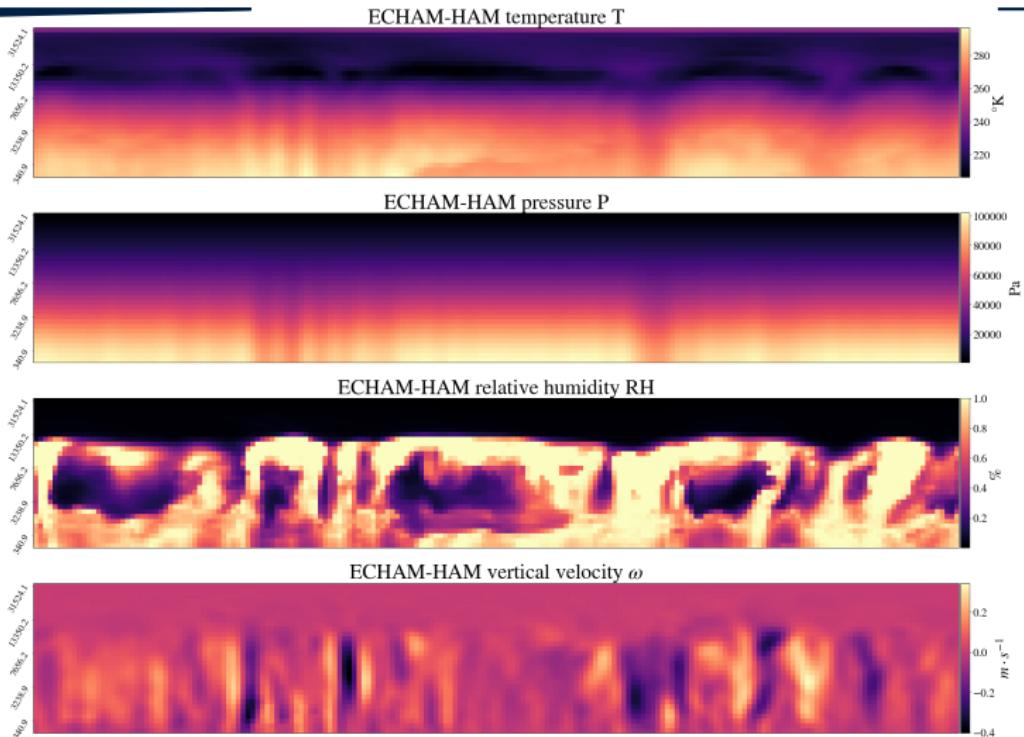


Figure 4: Vertical slices at latitude 51.29° of meteorological predictors

Ideal slices

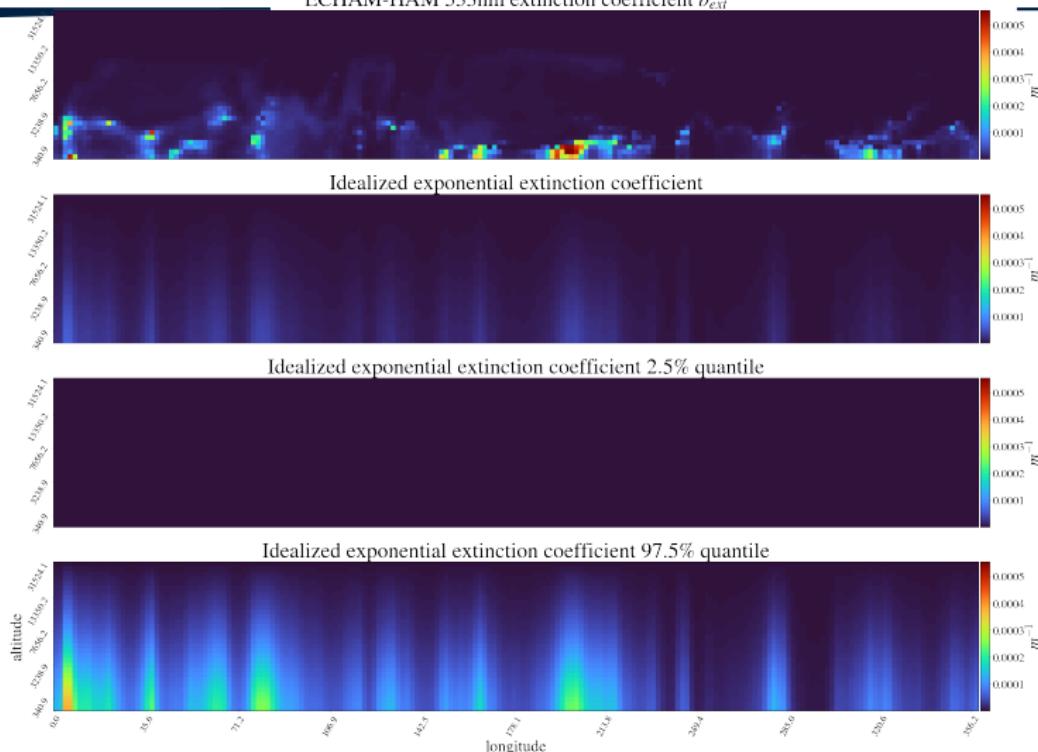


Figure 5: Vertical slices at latitude 51.29° of idealized profiles

Predicted slices

21

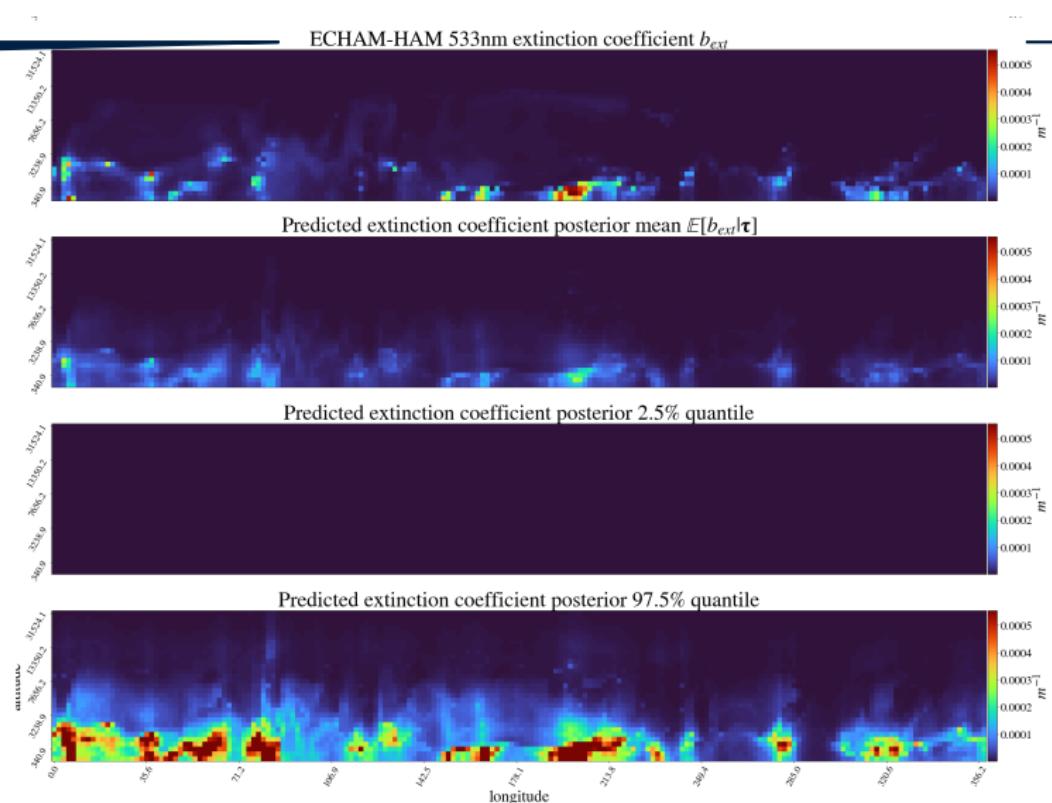
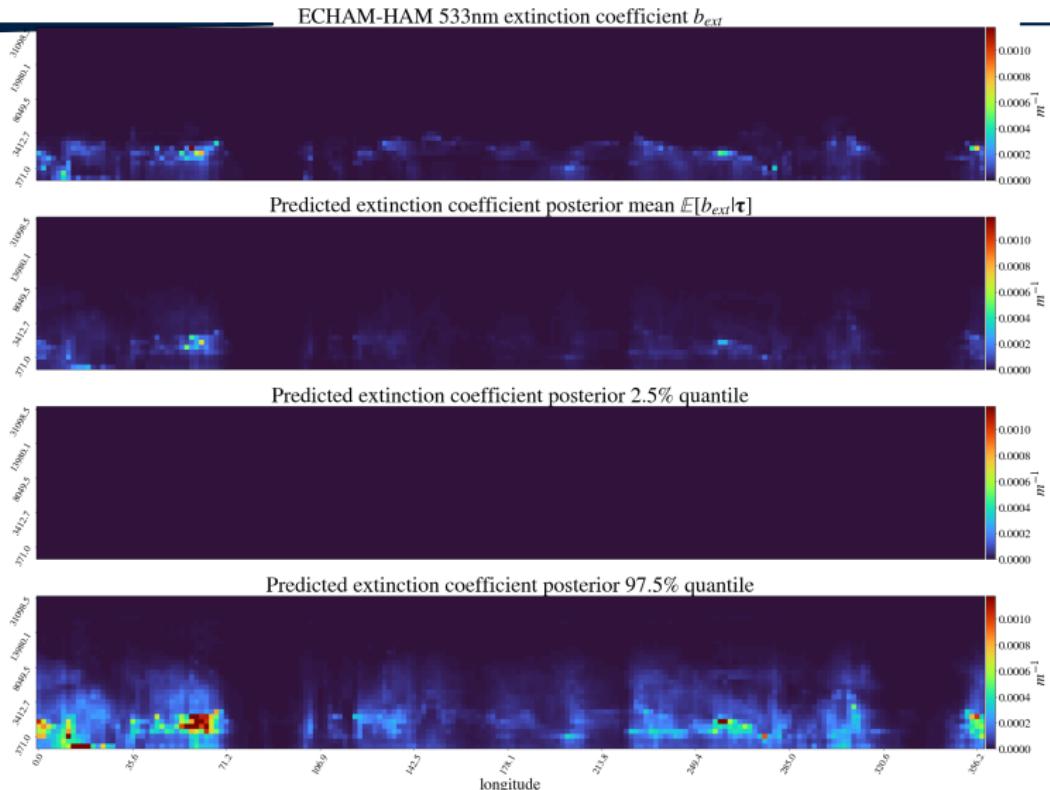


Figure 6: Vertical slices at latitude 51.29° of predicted profiles

Predicted slices

22



Predicted slices

23

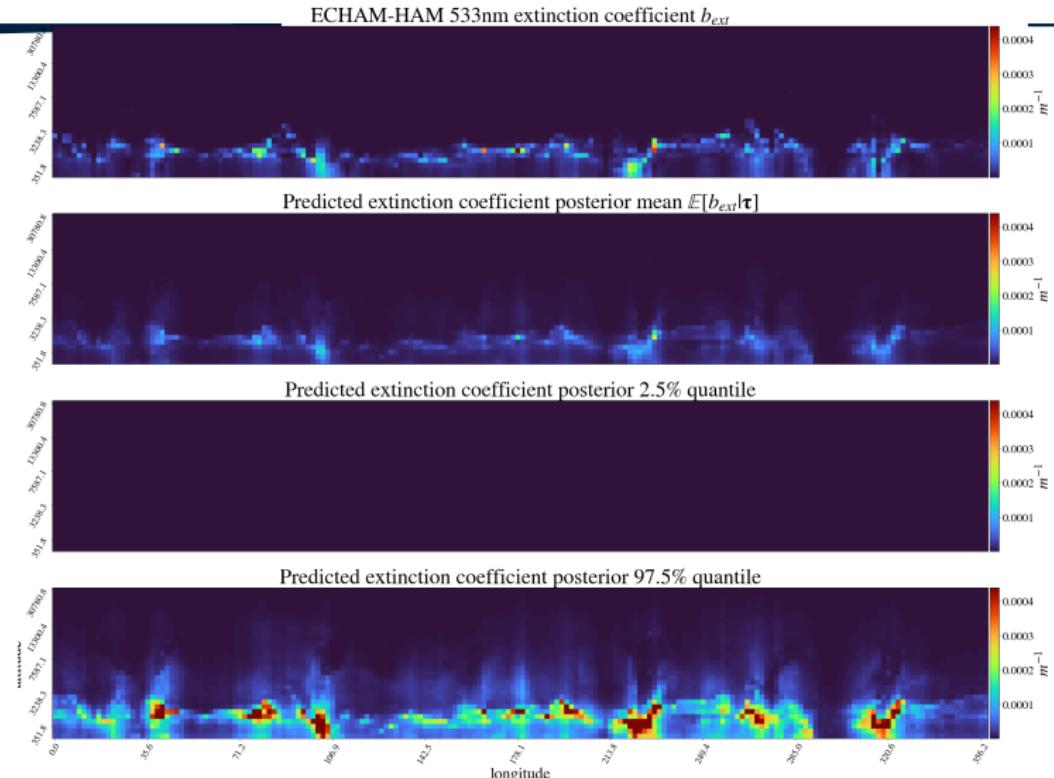


Figure 8: Vertical slices at latitude -38.2° of predicted profiles

Table 2: Scores of our method (Our) compared to an idealized exponential baseline (Ideal)

Region	Method	RMSE (10^{-5})	Corr (%)	Bias (10^{-6})	Bias98 (10^{-5})
<i>Entire column</i>	Our	3.29 ± 0.02	70.9 ± 0.4	-0.167 ± 0.105	-0.646 ± 0.151
	Ideal	4.10	51.2	-2.40	-4.08
<i>Boundary layer</i>	Our	6.06 ± 0.03	69.8 ± 0.5	-1.25 ± 0.45	-4.64 ± 0.32
	Ideal	7.55	53.6	-12.9	-11.7

Region	Method	ELBO	Calib95 (%)	ICI (10^{-2})
<i>Entire column</i>	Our	13.1 ± 0.1	94.9 ± 0.1	5.29 ± 0.59
	Ideal	13.1	96.0	5.05
<i>Boundary layer</i>	Our	10.6 ± 0.1	98.8 ± 0.1	8.27 ± 0.29
	Ideal	10.2	93.5	19.1

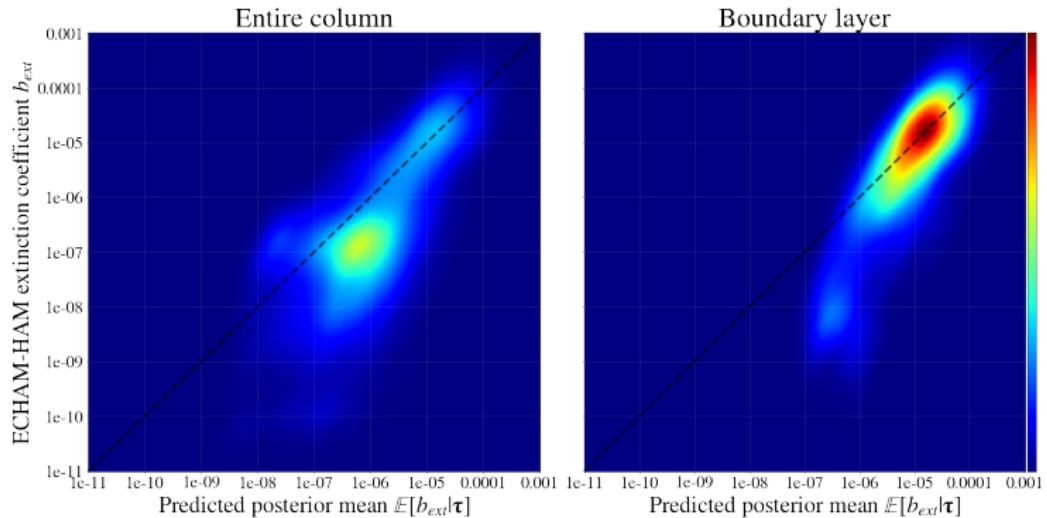


Figure 9: Density plots of groundtruth extinction coefficient values against predicted posterior mean extinction coefficient; **Left:** entire column; **Right:** boundary layer only

Conclusion

Insights

- Possible to reconstruct realistic vertical extinction of aerosol with sound uncertainty quantification using AOD and readily available meteorological predictors

Insights

- ▶ Possible to reconstruct realistic vertical extinction of aerosol with sound uncertainty quantification using AOD and readily available meteorological predictors
- ▶ Method is simple, computationally efficient, makes assumptions explicit and as such grants control and interpretability

Insights

- ▶ Possible to reconstruct realistic vertical extinction of aerosol with sound uncertainty quantification using AOD and readily available meteorological predictors
- ▶ Method is simple, computationally efficient, makes assumptions explicit and as such grants control and interpretability
- ▶ Can benefit aerosol satellite products, leading to more accurate priors over aerosol vertical profiles

Insights

- ▶ Possible to reconstruct realistic vertical extinction of aerosol with sound uncertainty quantification using AOD and readily available meteorological predictors
- ▶ Method is simple, computationally efficient, makes assumptions explicit and as such grants control and interpretability
- ▶ Can benefit aerosol satellite products, leading to more accurate priors over aerosol vertical profiles

Limitations and Directions

- ▶ Can only capture extinction due to aerosol swelling (missing mass concentration, particle size and radiative properties extinction which would require additional predictors harder to obtain)

Insights

- ▶ Possible to reconstruct realistic vertical extinction of aerosol with sound uncertainty quantification using AOD and readily available meteorological predictors
- ▶ Method is simple, computationally efficient, makes assumptions explicit and as such grants control and interpretability
- ▶ Can benefit aerosol satellite products, leading to more accurate priors over aerosol vertical profiles

Limitations and Directions

- ▶ Can only capture extinction due to aerosol swelling (missing mass concentration, particle size and radiative properties extinction which would require additional predictors harder to obtain)
- ▶ Methodological extensions (use multiple wavelengths, allow unmatched data setting)

Insights

- ▶ Possible to reconstruct realistic vertical extinction of aerosol with sound uncertainty quantification using AOD and readily available meteorological predictors
- ▶ Method is simple, computationally efficient, makes assumptions explicit and as such grants control and interpretability
- ▶ Can benefit aerosol satellite products, leading to more accurate priors over aerosol vertical profiles

Limitations and Directions

- ▶ Can only capture extinction due to aerosol swelling (missing mass concentration, particle size and radiative properties extinction which would require additional predictors harder to obtain)
- ▶ Methodological extensions (use multiple wavelengths, allow unmatched data setting)
- ▶ Different use case: investigation on aerosol mode/species contribution to extinction using model data only

- [1] Leon Ho Chung Law, Dino Sejdinovic, Ewan Cameron, Tim C.D. Lucas, Seth Flaxman, Katherine Battle, and Kenji Fukumizu. Variational learning on aggregate outputs with Gaussian processes. In *Advances in Neural Information Processing Systems*, 2018.