
Bayesian inference for aerosol vertical profiles

Shahine Bouabid1 Duncan Watson-Parris2 Dino Sejdinovic1

1 Department of Statistics, University of Oxford
2 Atmospheric, Oceanic and Planetary Physics, Department of Physics,

University of Oxford

This project receives funding from the European Union’s Horizon 2020 research and innovation
programme under Marie Sk lodowska-Curie grant agreement No 860100



Motivation

;



Motivation 3

I Uncertainty in magnitude of forcing due to ACIs comes from:

1. Uncertainty in estimation of pre-industrial forcing
2. Uncertainty in estimation of present day forcing

I Uncertainty in present-day forcing due (in part) to difficulty to
get informative measurements of aerosol at global scale
−→ best we can do is AOD.

I AOD is a 2D quantity which does not inform about vertical
distribution of aerosols.

I Vertical distribution of aerosols changes magnitude and even
sign of the forcing .
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Try to reconstruct aerosol vertical profiles using AOD
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2D Spatial Disaggregation 4

Figure 1: Left: regional Malaria incidence rate; Center: Spatially
disaggregated mean Malaria incidence rate; Right: Standard deviation
over spatially disaggreagted rate; Law et al. [1].

rateregion = Aggregateregion

{
ratefine-grid(xfine-grid)

}
I Observations: rateregion and xfine-grid

I Goal: Infer ratefine-grid as a function of xfine-grid
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{
bext

}
=
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0

bext(h) dh

I Observations: τcolumn and x3D

I Goal: Infer bext as a function of x3D
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Which x3D? 6

I Use simple, readily available predictors such as pressure,
temperature, humidity −→ reanalysis data.

For example, for a given altitude h we can take

x = (t, lat, lon, P, T,RH) (1)

Objective
Using observations of AOD and vertically-resolved

meteorological predictors, we want to estimate aerosol extinction profiles.
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An idealized vertical prior 8

I Idealized profiles assumed in remote sensing products
bext(h) ∝ e−h/L.

Figure 2: Examples of idealized exponential vertical profiles

I Rough approximation but captures a key structure: most
aerosol lie in boundary layer (< 2 km)
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Weighting of the ideal prior 9

I Propose to weight the idealized exponential profile with a
positive weight function w(x|h) > 0

ϕ(x|h) = w(x|h)e−h/L (2)

I Capture finer details of variability putting more mass where
meteorological predictors suggest higher aerosol loading

Expect relationship between x|h and bext(h) to be non-trivial and
highly non-linear ⇒ learn the weighting w(x|h)
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Probabilistic modelling of the weight function 10

I Lack of knowledge about influence of meteorological variables
→ epistemic uncertainty

I Reflect this with Bayesian design of w(x|h)

w(x|h) = ψ(f(x|h)) (3)

f ∼ GP(m, k) (4)

ψ > 0 (5)

I Simple choice ψ = exp

I ψ ◦ f describes expressive range of probability distribution over
complex positive functions

I Remains interpretable (kernel user-specified determines
covariance and functional smoothness)
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Need for an observation model 12

I We observe AOD τ → ideally we want exactly τ =
∫H

0
ϕ(x|h) dh

I Unrealistic because observations are likely noisy

Figure 3: Left: empirical distribution of AOD retrievals from AERONET
stations; Right: logspace version of left plot

Assume log-normal model τ |µ, σ ∼ LN (µ, σ).
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I Use mean reparametrization of LN (µ, σ).

η = E[LN (µ, σ)] = eµ+σ2/2

⇒ η = eµ+σ2/2

⇒ µ = log η − σ2

2

⇒ LN (µ, σ) = LN
(

log η − σ2

2
, σ

)

Observation model

τ |η ∼ LN
(

log η − σ2

2
, σ

)
(6)

η =

∫ H

0

ϕ(x|h) dh (7)

With multiple observations τ1, ..., τn, scale parameter σ > 0 assumed shared
among columns but η (or µ) is column-specific.
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Model formulation for the ith atmospheric column

Observation Model:

τi|ηi ∼ LN
(

log ηi −
σ2

2
, σ

)
ηi =

∫ H

0

ϕ(xi|h) dh

Prior:

ϕ(xi|h) = ψ(f(xi|h))e−h/L

f ∼ GP(m, k)

τi Observed AOD
LN Log-normal distribution
ηi, σ Mean and scale parameters
ϕ Prior for bext
xi|h Input covariates at altitude h
H Atmospheric column height
ψ Positive link function
L Idealized heightscale parameter
f GP prior

I Objective: Infer distribution of ϕ(x|h)| τ1, ..., τn︸ ︷︷ ︸
τ
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Inference 15

I Actually... f(x|h)|τ
I Access to posterior distribution p(f|τ ) allows to compute

predictive mean and variance of ϕ at input x|h following

E[ϕ(x|h)|τ ] =

∫
ψ(f)e−h/Lp(f|τ ) df

Var(ϕ(x|h)|τ ) = E[ϕ(x|h)2|τ ]− E[ϕ(x|h)|τ ]2

I Can be estimated with Monte-Carlo (and admits closed form for
ψ = exp)



Infer p(f|τ )? 16

Problem

p(f|τ ) =
p(τ |f)p(f)∫
p(τ |f)p(f) df︸ ︷︷ ︸
intractable

Solution

I Approximate p(f|τ ) (variational approximation)

I Approximation scheme allows for sparse representation which
scales to very large number of data points
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ECHAM-HAM setup 18

Name Notation Dimensions

Predictors

Temperature T (t, lat, lon, lev)
Pressure P (t, lat, lon, lev)
Relative humidity RH (t, lat, lon, lev)
Vertical velocity ω (t, lat, lon, lev)

Response AOD 550nm τ (t, lat, lon)

Groundtruth Extinction coefficient 533nm bext (t, lat, lon, lev)

Table 1: Gridded variables from ECHAM-HAM simulation data. The grid
includes 8 time steps (t), 96 latitude levels (lat), 192 longitude levels (lon)
and 31 vertical pressure levels (lev). Our objective is to vertically
disaggregate the response τ using the vertically resolved predictors
(T, P,RH, ω) and spatiotemporal columns locations (t, lat, lon).

I Total of 8× 96× 192 = 147 456 columns.



Predictors slices 19

Figure 4: Vertical slices at latitude 51.29◦ of meteorological predictors



Ideal slices 20

Figure 5: Vertical slices at latitude 51.29◦ of idealized profiles
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Figure 6: Vertical slices at latitude 51.29◦ of predicted profiles



Predicted slices 22

Figure 7: Vertical slices at latitude -0.93◦ of predicted profiles



Predicted slices 23

Figure 8: Vertical slices at latitude -38.2◦ of predicted profiles



Predicted slices 24

Table 2: Scores of our method (Our) compared to an idealized exponential
baseline (Ideal)

Region Method RMSE (10-5) Corr (%) Bias (10-6) Bias98 (10-5)

Entire
column

Our 3.29±0.02 70.9±0.4 -0.167±0.105 -0.646±0.151
Ideal 4.10 51.2 -2.40 -4.08

Boundary
layer

Our 6.06±0.03 69.8±0.5 -1.25±0.45 -4.64±0.32
Ideal 7.55 53.6 -12.9 -11.7

Region Method ELBO Calib95 (%) ICI (10-2)

Entire
column

Our 13.1±0.1 94.9±0.1 5.29±0.59
Ideal 13.1 96.0 5.05

Boundary
layer

Our 10.6±0.1 98.8±0.1 8.27±0.29
Ideal 10.2 93.5 19.1



Figure 9: Density plots of groundtruth extinction coefficient values against
predicted posterior mean extinction coefficient; Left: entire column;
Right: boundary layer only



Conclusion

;



Conclusion 27

Insights

I Possible to reconstruct realistic vertical extinction of aerosol with
sound uncertainty quantification using AOD and readily available
meteorological predictors

I Method is simple, computationally efficient, makes assumptions
explicit and as such grants control and intepretability

I Can benefit aerosol satellite products, leading to more accurate priors
over aerosol vertical profiles

Limitations and Directions
I Can only capture extinction due to aerosol swelling (missing mass

concentration, particle size and radiative properties extinction which
would require additional predictors harder to obtain)

I Methodological extensions (use multiple wavelengths, allow unmatched
data setting)

I Different use case: investigation on aerosol mode/species contribution
to extinction using model data only
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