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Abstract

Aerosol-cloud interactions constitute the largest source of uncertainty in assess-
ments of the anthropogenic climate change. This uncertainty arises in part from the
difficulty in measuring the vertical distributions of aerosols. We often have to settle
for less informative vertically aggregated proxies such as aerosol optical depth
(AOD). In this work, we develop a framework to infer vertical aerosol profiles
using AOD and readily available vertically resolved meteorological predictors such
as temperature or relative humidity. We devise a simple Gaussian process prior
over aerosol vertical profiles and update it with AOD observations. We validate
our approach using ECHAM-HAM aerosol-climate model data. Our results show
that, while simple, our model is able to reconstruct realistic extinction profiles with
well-calibrated uncertainty. In particular, the model demonstrates a faithful recon-
struction of extinction patterns arising from aerosol water uptake in the boundary
layer.

1 Introduction

Aerosols are microscopic particles suspended in the atmosphere such as dust, sea salt or black carbon.
They influence the Earth’s energy budget with a negative radiative forcing that counteracts the global
warming from anthropogenic greenhouse gases emissions. A large fraction of this forcing is due to
their modulation of radiative properties of clouds. By acting as cloud condensation nuclei (CCN),
aerosols can drive up the cloud droplet number while driving down the mean cloud droplet size. The
resulting clouds are brighter, larger and last longer [1, 20]. They hence reflect more solar radiation
and cool the Earth.

However, the magnitude of this forcing is difficult to estimate [9] in part because the physical
processes underpinning aerosol-cloud interactions are not yet fully understood. To better estimate
present day forcing we require accurate, global measurements of CCN concentrations to assess
radiative properties of clouds [1, 20]. Unfortunately, measuring CCN concentrations can only
be achieved in-situ, and while field campaigns have already undertaken to collect detailed CCN
observations, these measurements are spatio-temporally sparse and provide insufficient constraint on
global distribution of aerosols [2, 15].

For lack of better observations, the Aerosol Optical Depth (AOD) has been widely adopted as a first
order proxy of CCN concentration in an atmospheric column [2, 4, 12]. The AOD is a measure of
the extinction of solar radiations through an atmospheric column. It is denoted by τ and defined at
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a given wavelength, time, latitude and longitude by τ =
∫H

0
bext(h) dh, where bext is the extinction

coefficient1 and the integral is taken over the height H of an atmospheric column. The AOD is
appealing because it is routinely observed on a global scale by satellite products [14] which, as
opposed to in situ observations, offer long term global records.

However, the AOD is a column-integrated quantity and does not provide information on the vertical
distribution of aerosols. This is limiting since their vertical distribution strongly influences both the
magnitude and the sign of the forcing. Stier [18] highlights the importance of determining aerosol
vertical distributions to provide stronger constraints on CCN at specific altitudes. In particular, the
AOD fails to describe near-surface properties such as the concentration of aerosols in the lowest part
of the atmosphere, called the boundary layer.

In this work, we propose to probe whether AOD observations can be used to constrain a global prior
over aerosol vertical distributions. Formally, given an AOD observation τ , we want to reconstruct the
corresponding extinction coefficient profile bext. Using Gaussian processes (GPs) [13], we design a
Bayesian model that maps vertically-resolved meteorological variables that are readily available (e.g.
temperature, relative humidity) to a probabilistic estimate of bext. This probabilistic estimates then
integrates into the AOD. The model formulation is simple and makes assumptions explicit, hence
granting control and interpretability over predictions while offering built-in uncertainty quantification.

We use ECHAM-HAM global aerosol-climate model simulation data [16, 17, 23] to validate our
approach. While our prime motivation is to reconstruct bext from satellite observations of AOD, the
intricacies of combining measurements from different instruments makes it challenging to validate
any proposed methodology. On the other hand, ECHAM-HAM is a self-consistent climate model
that offers readily available aerosol vertical profiles, and is better suited for model development.

We demonstrate our model is able to reconstruct natural patterns that arise in aerosol vertical
distribution, in particular in the boundary layer. We show that very simple and readily available
meteorological predictors suffice to obtain a good estimation of the extinction coefficient.

2 Model Design

2.1 Design of the prior

In passive satellite sensors, AOD retrieval algorithms assume a form for vertical profiles, which in the
simplest case takes the exponential form bext(h) ∝ e−h/L [8, 22]. L is a fixed height scale parameter
that is typically taken as the top altitude of the boundary layer (≈ 2km). These profiles capture a key
element of aerosol vertical distribution: most CCN lies at low altitude in the boundary layer.

Drawing from this, we propose to model the extinction coefficient bext by weighting an idealized
exponential vertical profile with a positive weight function w : Rd → (0,+∞). Namely, let x|h
denotes a d-dimensional vector resulting from the concatenation of spatiotemporal and meteorological
variables — such as temperature, pressure, humidity — for a given altitude h. The prior for the
extinction coefficient profile is denoted φ and takes the simple form φ(x|h) = w(x|h)e−h/L.

This weight function is meant to capture finer details of variability in the extinction coefficient profile,
putting more mass in regions where meteorological predictors suggest aerosol loading is likely to be
higher.

To account for the non-linearity and the epistemic uncertainty over the relationship between x|h and
the extinction coefficient bext(h), we propose a Bayesian formulation of the weighting function. We
place a GP prior over the weight function and wrap it with an exponential transform to ensure the
weights are strictly positive. Formally, we model the weight function as w(x|h) = ef(x|h) where
f ∼ GP(m, k).

2.2 Choice of the observation model

Since the AOD is strictly positive and highly-skewed toward small values (≈ 0.14), the log-normal
distribution has been reported to provide a good fit, e.g. for studies focusing on locations in North

1the sum of contribution from particle-light scattering plus absorption of light by particles

2



Model formulation for the ith atmospheric column

Observation Model:

τi|ηi ∼ LN
(
log ηi −

σ2

2
, σ

)
ηi =

∫ H

0

φ(xi|h) dh

Prior:

φ(xi|h) = ef(xi|h)−h/L

f ∼ GP(m, k)

τi Observed AOD
LN Log-normal distribution
ηi, σ Log-normal mean and scale parameters
φ Prior for bext
xi|h Input covariates at altitude h
H Atmospheric column height
L Idealized profile heightscale parameter
f GP prior with mean m and kernel k

Figure 1: Observation model and prior formulation for the ith atmospheric column.

America and Europe [11]. We thus propose a log-normal observation model for AOD observations,
which we denote τ |µ ∼ LN (µ, σ).

We connect the vertical extinction profile φ to the AOD τ through its mean as η := E[τ ] =∫H

0
φ(x|h) dh. Using the fact that η = eµ+σ2/2 ⇔ µ = log η − σ2/2, we can reparametrise the

model to express it in terms of the log-normal mean η. The complete model description for the ith
atmospheric column is summarized in Figure 1.

2.3 Posterior inference

Updating our prior with AOD observations means computing the posterior distribution of φ|τ . Since
φ results from a transformation of the GP, we will focus on the on the posterior distribution of f for
convenience, which is given by p(f|τ) = p(τ |f)p(f)∫

R p(τ |f)p(f) df . Unfortunately, because of the log-normal
observation model, the integral denominator is not available in closed-form, making the posterior
intractable.

We thus propose to use a variational approximation scheme [7, 10, 19] to substitute this intractable
inference problem with a tractable optimization problem. In addition, we make the variational
approximation sparse [19] such that the model can scale to large amounts of data. A detailed
derivation of the variational approximation is provided in Appendix A.

3 Experiments

3.1 Dataset and experimental setup

The aerosol-climate model ECHAM-HAM is a self-consistent global climate model of aerosol
radiative properties and CCN which demonstrates excellent agreement with AOD measurements from
ground-based sun-photometers and satellite retrievals [16]. The simulation used includes aerosols
optical properties and meteorological variables at a 1.8◦×1.8◦ horizontal resolution and over 31
levels of vertical resolution and for 8 regularly spaced time steps over a day (06/06/2008). The
resulting dataset counts 147,456 atmospheric columns used as training points. Its detailed dimensions
are reported in Appendix B

We use the AOD at 550nm as the response variable to vertically disaggregate and the extinction
coefficient at 533nm as the groundtruth variable to evaluate our predictions against. To select
the vertically resolved variables used as predictors, we limit ourselves to standard meteorological
variables that could be easily obtained from reanalysis data: temperature T , pressure P , relative
humidity RH and updraft ω. Indeed, while aerosol satellite imagery do not provide any vertically
resolved measurements of meteorological variables, the latter can be reliably extracted on different
pressure-levels from reanalysis data or from atmospheric sounders. The input variable writes x =
(t, lat, lon, T, P,RH, ω). The data and code are openly available [3].
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Table 1: Comparison of our method to an idealized exponential baseline for deterministic (RMSE,
Bias, Bias98) and probabilistic (ELBO, ICI) metrics; “Entire column” means scores are computed
and averaged for every altitude levels; “Boundary layer” means scores are computed and averaged
for altitude levels of the boundary level only (<2 km); ↓ : closer to 0 means better; ↑ : higher means
better; runs with our method are averaged over 5 seeds; we report 1 standard deviation.

Region Method RMSE (10-5)↓ Bias (10-6)↓ Bias98 (10-5)↓ ELBO↑ ICI (10-2)↓

Entire
column

Our method 3.29±0.02 -0.167±0.105 -0.646±0.151 13.1±0.1 5.29±0.59
Idealized 4.10 -2.40 -4.08 13.1 5.05

Boundary
layer

Our method 6.06±0.03 -1.25±0.45 -4.64±0.32 10.6±0.1 8.27±0.29
Idealized 7.55 -12.9 -11.7 10.2 19.1

3.2 Results

We compare the predicted extinction coefficient profile to the extinction coefficient from ECHAM-
HAM simulations. We use as a comparative baseline an idealized exponential profile. We report
results in Table 1 in terms of deterministic metrics — root mean square error (RMSE), mean bias
(Bias), 98th quantile bias (Bias98) — and probabilistic metrics — evidence lower bound (ELBO),
integrated calibration index (ICI). Details on the metrics are provided in Appendix C

The posterior mean profile arising from the proposed method outperforms the idealized exponential
baseline for all deterministic metrics. Evaluating over the entire column consistently yields better
scores than over the boundary layer only. This is to be expected as the extinction coefficient outside
the boundary layer tends to vanish to zero and most of the variability happens within the boundary
layer.

The probabilistic metrics are comparable for both methods when computed over the entire column.
For the boundary layer however, our method outperforms the baseline, with a significant difference
for the ICI. This suggests that, in the boundary layer, the predicted posterior probability distribution
with our method is a sounder fit to the ECHAM-HAM extinction coefficient profiles.

In Appendix D, we display vertical slices at fixed latitude of the ECHAM-HAM extinction coefficient
and the corresponding predicted extinction coefficient. For comparison, we also display a prediction
with the idealized exponential baseline. We observe that our predicted mean profile is able to
reconstruct extinction patterns that are visually very similar the the groundtruth extinction coefficient.
In comparison with the idealized exponential baseline, the extinction profiles predicted with our
method look much more realistic. This is encouraging given the only aerosol optical property used is
the AOD. In particular, since aerosols water uptake is related to relative humidity, we observe a good
capacity to recover patterns corresponding to extinction due to aerosol water uptake in the boundary
layer. We also observe that tail extinction coefficient values are consistently captured within the 95%
confidence region of the posterior distribution.

4 Conclusion

We introduce a simple GP-based methodology to vertically disaggregate the AOD using simple
vertically resolved meteorological predictors such as temperature, pressure or relative humidity and
demonstrate its successful application to the reconstruction of ECHAM-HAM simulated extinction
profiles. Our model outperforms an idealized baseline and displays capacity to recover realistic
extinction patterns, in particular for extinction patterns arising from aerosol water uptake in the
boundary layer.

In future work we intend to apply our model to AOD arising from satellite observations and meteoro-
logical predictors from reanalysis data. Since observations of groundtruth extinction coefficient are
not available in 2D satellite products, we intend to collocate observations from MODIS 2D AOD
product [14] with CALIOP vertical lidar measurements [21] to validate the model.
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A Variational approximation of the posterior

A.1 Finite-sample problem formulation

Assume we observe the AOD for n independent columns, which we stack into the vector τ =

[τ1 . . . τn]
⊤ ∈ Rn. For the ith column, we also observe mi vertically resolved meteorological

covariates x(1)i , . . . , x
(mi)
i and their respective altitudes h(1)i < . . . < h

(mi)
i , such that x(j)i ∼

p(x|h(j)i ). We concatenate these observations into a dataset D =

{(
x
(j)
i , h

(j)
i

)mi

j=1
, τi

}n

i=1

and

denote M =
∑n

i=1mi the total number of vertically resolved samples.

If f denotes a realization of f at any input x|h, the posterior distribution of f(x|h) given observations
is denoted p(f|τ ). Since φ(x|h) = ef(x|h), the prior φ(x|h) is a log-normal random variable given
by

φ(x|h) = ef(x|h)−h/L ∼ LN
(
m(x|h)− h/L, k(x|h, x|h)1/2

)
. (1)

A direct consequence is that we can obtain analytical expressions of its mean and variance, now given
by

E[φ(x|h)] = em(x|h)− h
L+ 1

2k(x|h,x|h). (2)

Var(φ(x|h)) =
(
ek(x|h,x|h) − 1

)
e2m(x|h)−2 h

L+k(x|h,x|h). (3)

Hence, this also applies to the posterior and having access to the posterior p(f|τ ) allows to compute
the predictive means and variance of φ(x|h)|τ using the posterior mean and variance of p(f|τ ).

A.2 A sparse variational approximation of the posterior

The predictive posterior distribution of interest is given by

p(f|τ ) = p(τ |f)p(f)∫
R p(τ |f)p(f) df

. (4)

The integral denominator is not available in closed-form, making the posterior intractable. We
propose to use a variational approximation scheme [7, 10, 19] to substitute this intractable inference
problem with a tractable optimization problem. In addition, we make the variational approximation
sparse [19] such that the model can scale to large amounts of data.

Let w = [w1 . . . wp]
⊤ ∈ Rp be a set of p ≪ M inducing locations over the space of inputs.

Their evaluation by the GP follows a multivariate normal distribution f(w) ∼ N (0,Kww), where
Kww = k(w,w). We denote u = f(w) ∈ Rp and refer to this vector as inducing variables.

A p-dimensional parametric distribution is then set over these inducing variables. We choose this
distribution as a multivariate normal defined by q(u) := N (u|µw,Σw). µw,Σw are called the
variational parameters and need to be tuned such that q(u) best approximates the true posterior
p(u|τ ).
Once this is achieved, we take as an approximation to p(f|τ ) the variational posterior defined by
q(f) :=

∫
Rp p(f|u)p(u) du, which is given in closed-form by

q(f) = N (f|µ̄x|h, Σ̄x|h) (5)

µ̄x|h = k(x|h,w)K−1
wwµw (6)

Σ̄x|h = k(x|h, x|h)− k(x|h,w)
(
K−1

ww −K−1
wwΣwK−1

ww

)
k(w, x|h). (7)

Naturally, (5) can be extended to describe a variational posterior over multiple GP entries. Namely,
let x∗ ∈ RD denote a vector of input entries. If f∗ ∈ RD denotes a realization of f(x∗), then the
associated variational posterior is given by

q(f∗) = N (f∗|µ̄x∗ , Σ̄x∗) (8)

µ̄x∗ = k(x∗,w)K−1
wwµw (9)

Σ̄x∗ = k(x∗,x∗)− k(x∗,w)
(
K−1

ww −K−1
wwΣwK−1

ww

)
k(w,x∗). (10)
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The sparse nature of this approach becomes apparent in (9) and (10). Indeed, regardless of the number
of samples we wish to evaluate the variational posterior over, we only need to invert a p× p matrix,
incurring a O(p3) computational cost.

A.3 Learning the variational parameters µw,Σw

As mentioned above, the variational parameters µw,Σw need to be tuned such that q(u) best
approximates the posterior p(u|τ ), which is intractable. This problem is casted as the maximisation
of an objective called the evidence lower-bound (ELBO), given by

ELBO(q) = Eq(f)[log p(τ |f)]−KL(q(u)||p(u)). (11)

The ELBO is a lower-bound to the marginal log-likelihood log p(τ ) ≥ ELBO(q). It can thus be used
as a proxy of log p(τ ) to also tune the model hyperparameters.

The second term in (11) is the Kullback-Leibler divergence between two multivariate normal distribu-
tions. It admits a closed-form expression and can be computed. The first term, on the other hand, is
an expected log-likelihood under the variational posterior which cannot be analytically computed. It
can be decomposed into column-wise terms

Eq(f)[log p(τ |f)] =
n∑

i=1

Eq(fi)

[
logLN

(
τi| log ηi −

σ2

2
, σ

)]
, (12)

where fi =
[
f
(1)
i . . . f

(mi)
i

]⊤
∈ Rmi corresponds to the GP realization over the ith column only.

To estimate (12), we must first evaluate the mean parameter ηi =
∫H

0
ψ(f(xi|h))e−h/L dh with the

finite number of GP evaluations fi we have access to. We propose to use the trapezoidal integration
scheme given by

η̂i =

mi−1∑
j=1

exp(f
(j+1)
i − h

(j+1)
i /L)− exp(f

(j)
i − h

(j)
i /L)

2

(
h
(j+1)
i − h

(j)
i

)
. (13)

While we choose the trapezoidal rule for simplicity, we note that alternative finite-sample integration
schemes can be chosen here in accordance with the needs.

Second, because of the log-normal observation model, the expected log-likelihood remains in-
tractable. To estimate it, while allowing backpropagation through the variational parameters, we use
a reparametrization trick [5]. Namely, we sample ϵi ∼ N (0, Imi

) and compute fi = µ̄i + Σ̄
1/2
i ϵi,

where µ̄i, Σ̄i are the variational posterior parameters for the ith column and are obtained by applica-
tion of (9 and (10) over the predictors of the ith column. The resulting GP sample fi is then used to
estimate the mean parameter η̂i following (13) and we can approximate the expected log-likelihood
with its one-sample estimate

Eq(fi)

[
logLN

(
τi| log ηi −

σ2

2
, σ

)]
≈ logLN

(
τi|η̂i −

σ2

2
, σ

)
. (14)

This method allows to estimate the ELBO objective, which in turn can be maximised with respect
to the variational parameters µw,Σw using a stochastic gradient approach for example. The model
hyperparameters can also be tuned jointly with this objective. These include the log-normal scale σ
or the kernel k hyperparameters (e.g. variances and lengthscales), with an option to parametrize these
kernels using feature maps given by deep neural networks [6]. As it is standard in sparse variational
GPs [19], we will also learn the inducing locations w.
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B Dataset

Name Notation Dimensions

Predictors

Temperature T (t, lat, lon, lev)
Pressure P (t, lat, lon, lev)
Relative humidity RH (t, lat, lon, lev)
Vertical velocity ω (t, lat, lon, lev)

Response AOD 550nm τ (t, lat, lon)

Groundtruth Extinction coefficient 533nm bext (t, lat, lon, lev)
Table 2: Gridded variables from ECHAM-HAM simulation data. The grid includes 8 time steps (t),
96 latitude levels (lat), 192 longitude levels (lon) and 31 vertical pressure levels (lev) — which is a
proxy for h. Our objective is to vertically disaggregate the response τ using the vertically resolved
predictors (T, P,RH, ω) and spatiotemporal columns locations (t, lat, lon).

C Evaluation metrics

The integrated calibration index is defined as

ICI =

∫ 1

0

|N(α)− (1− α)|dα, (15)

where N(α) is the percentage of ECHAM-HAM extinction coefficient observations that fall within
the (1− α) credible interval of the distribution of bext|τ .

Table 3: Evaluation metrics; Deterministic metrics compare the predicted posterior mean E[bext|τ ]
to the ECHAM-HAM extinction coefficient; Probabilistic metrics evaluate the complete predicted
posterior probability distribution of bext|τ against ECHAM-HAM extinction coefficient.

Metric Description Best when

Deterministic

RMSE Root mean square error close to 0
Bias Mean bias close to 0
Bias98 Bias in the 98th percentile close to 0

Probabilistic
ELBO Evidence lower-bound of groundtruth bext higher
ICI Integrated calibration index — see (15) close to 0

D Vertical slices plots
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Figure 2: Vertical slices at latitude 51.29◦ of meteorological predictors (T, P,RH, ω), groundtruth
extinction coefficient, predicted extinction coefficient posterior mean, 2.5% and 97.5% quantiles of
the predicted extinction coefficient posterior distribution
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Figure 3: Vertical slices at latitude -0.93◦ of meteorological predictors (T, P,RH, ω), groundtruth
extinction coefficient, predicted extinction coefficient posterior mean, 2.5% and 97.5% quantiles of
the predicted extinction coefficient posterior distribution
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Figure 4: Vertical slices at latitude -38.2◦ of meteorological predictors (T, P,RH, ω), groundtruth
extinction coefficient, predicted extinction coefficient posterior mean, 2.5% and 97.5% quantiles of
the predicted extinction coefficient posterior distribution
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Figure 5: Vertical slices at latitude 51.29◦ of groundtruth extinction coefficient, idealized exponential
extinction coefficient, 2.5% and 97.5% quantiles of the idealized exponential extinction coefficient
distribution

13


	Introduction
	Model Design
	Design of the prior
	Choice of the observation model
	Posterior inference

	Experiments
	Dataset and experimental setup
	Results

	Conclusion
	Variational approximation of the posterior
	Finite-sample problem formulation
	A sparse variational approximation of the posterior
	Learning the variational parameters bold0mu mumu program@epstopdfw, bold0mu mumu program@epstopdfw

	Dataset
	Evaluation metrics
	Vertical slices plots

