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Abstract 
California's Central Valley is the national agricultural center, producing 1/4 of the 1 
nation’s food. However, land in the Central Valley is sinking at a rapid rate (as 2 
much as 20 cm per year) due to continued groundwater pumping. Land subsidence 3 
has a significant impact on infrastructure resilience and groundwater 4 
sustainability. In this study, we aim to identify specific regions with different 5 
temporal dynamics of land displacement and find relationships with underlying 6 
geological composition. Then, we aim to remotely estimate geologic composition 7 
using interferometric synthetic aperture radar (InSAR)-based land deformation 8 
temporal changes using machine learning techniques. We identified regions with 9 
different temporal characteristics of land displacement in that some areas (e.g., 10 
Helm) with coarser grain geologic compositions exhibited potentially reversible 11 
land deformation (elastic land compaction). We found a significant correlation 12 
between InSAR-based land deformation and geologic composition using random 13 
forest and deep neural network regression models. We also achieved significant 14 
accuracy with 1/4 sparse sampling to reduce any spatial correlations among data, 15 
suggesting that the model has the potential to be generalized to other regions for 16 
indirect estimation of geologic composition. Our results indicate that geologic 17 
composition can be estimated using InSAR-based land deformation data. In-situ 18 
measurements of geologic composition can be expensive and time consuming and 19 
may be impractical in some areas. The generalizability of the model sheds light 20 
on high spatial resolution geologic composition estimation utilizing existing 21 
measurements. 22 

1 Introduction 23 

The Central Valley aquifer system is home to 6 million residents, 250 different crops, and a $17 24 
billion per annum agricultural industry. Groundwater from the Central Valley is a valuable resource 25 
that complements surface water, especially during times of drought or limited surface water 26 
availability. It is a heterogeneous aquifer system with confined, semi-confined, and unconfined 27 
aquifers where fresh groundwater occurs in alluvial deposits down to 3000ft [1]–[3]. 28 

Due to extensive agricultural activity and land use, the groundwater system in Central Valley has 29 
steadily suffered groundwater loss, estimated to be around 125 million acre-feet of groundwater 30 
drained between 1920-2013. This groundwater extraction has led parts of the aquifer to land 31 
subsidence, as rearranging of groundwater-suspended sediment grains compacts aquifer layers. 32 
Inelastic subsidence causes severe damage within the aquifer system, such as infrastructural damage 33 
and loss of groundwater storage space. 34 
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As the groundwater is pumped, the pore space between fine-grained silts and clay decreases, 35 
lowering the land surface. Compacted land cannot store as much groundwater as it used to. Some 36 
land compactions are reversible, and some are not, depending on the geologic composition. The 37 
types of subsidence may also change over time. Once reversible subsidence regions would 38 
experience continued compaction and become irreversible regions [4]–[7]. It is important to identify 39 
the type of subsidence, because we can take appropriate actions to each type of subsidence [8]. We 40 
will be able to recharge groundwater for reversible or elastic regions, and strictly control 41 
groundwater usage for irreversible or inelastic regions.  42 

In-situ geologic composition quantification is important in managing groundwater and 43 
preventing/recovering land subsidence, yet costly and labor intensive. Moreover, understanding 44 
geologic composition is essential for hydrological models for future predictive models of land 45 
subsidence and groundwater levels, especially in regions where extensive geologic data are not 46 
available. In this study, we aim to indirectly quantify geologic composition based on temporally 47 
changing remote land deformation information using InSAR. 48 

2 Methods 49 
2.0 InSAR data processing 50 
We processed Sentinel-1 (S-1) satellite data of track 42 and 144 from 2015/03/01 to 2020/08/31 and 51 
2014/11/08-2019/01/22, respectively to estimate ground movement associated with groundwater 52 
withdrawal/recharging in the Central Valley, California. The two tracks cover most of the central 53 
and southern Central Valley including San Joaquin Valley and Tulare Basin. The S-1 satellite 54 
constellation has been acquiring interferometric wide-swath mode data over the Central Valley with 55 
a regular interval of 12 days and a revisit time as short as 6 days using terrain observation by 56 
progressive scan (TOPS) technique. We use the JPL/Caltech ISCE software to generate the S-1 57 
interferometry and limit our interferometric pairs to the ones with temporal baseline no more than 58 
24 days. This mitigates temporal decorrelation. We then use a sentinel-1 stack processor to co-59 
register all SAR single look complex (SLC) images to the reference geometry and employ the 60 
enhanced spectral diversity technique to estimate azimuth misregistration between SLC images in a 61 
stack sense. Each interferogram is corrected for topographic phase and then unwrapped and 62 
geocoded using SRTM DEM model. After generating hundreds of unwrapped interferograms for 63 
each track, we use a variant of the Small Baseline Subset InSAR time series inversion approach to 64 
solve for line-of-sight (LOS) displacement time series and mean velocity. The approach also 65 
estimates the DEM error and uses spatiotemporal filtering to suppress high-frequency troposphere 66 
noise. For more details about the InSAR processing and time series analysis, please refer to Liu et 67 
al. (2019) [9]. The cumulative LOS displacements at each image date are outputted to a GMT grid, 68 
which is resampled to a ground posting of ~2km x 2km. 69 

2.1 Geologic composition 70 
The data for geologic composition was obtained from the geotexture model published as part of the 71 
USGS Central Valley Hydrologic Model (CVHM). The geotexture model was created based on 72 
lithologic data from 8,500 borehole logs, with depth reaching down to 3000ft from land surface. 73 
The lithologic data was classified in binary bins of fine-grained or coarse-grained. This was based 74 
on the original description in the log, with coarse-grained sediments encompassing sand, gravel, 75 
pebbles, and boulders and fine-grained sediments encompassing clay, lime, loam, mud, or silt. Then 76 
the percentage of fine-grained and coarse-grained sediments were calculated in 50ft segments. The 77 
texture model arrays are organized in the same dimensions as the groundwater flow model, with 1-78 
mi by 1-mi grid cells and 10 modeling layers based on horizontal geologic characteristics. Roughly 79 
20,000 model cells are active within the Central Valley. Readers are pointed to Faunt (2009) [10] 80 
for more details on the geotexture model.  81 

Coarse grain percent of each model layer from 1 to 10 in northern and southern Central Valley 82 
regions was used as the prediction target (Supplementary Figure 1). Coarse-grained soil is defined 83 
as containing no more than 50% fine grains (i.e., silt and clay, or particles smaller than 0.075 mm). 84 

2.2 Data interpolation 85 
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We first integrated multimodal data including InSAR, groundwater, precipitation, and geologic 86 
composition by interpolating data with the same spatial and temporal resolutions (every 2 weeks on 87 
a 2kmX2km grid) (Supplementary Figures 2 & 3). We then identified regions with different temporal 88 
dynamics of land displacement, groundwater depth, precipitation, and geologic composition 89 
(Supplementary Figure 4). Some areas (e.g., Helm) with coarser grain geologic compositions 90 
exhibited potentially reversible land transformations (elastic land compaction).  91 

2.3 Geologic estimation models 92 

We used long short-term memory (LSTM) as a recurrent network component. Conventional 93 
recurrent neural networks still have significant practical problems caused by exponential decay of 94 
gradient descent, which hinders learning of long-term relationships between time points. LSTM is 95 
a special type of recurrent neural network that can learn long-term dependencies through selective 96 
memory consolidation [11]. We used 3 convolutional input layers, 6 recurrent layers, 1 fully 97 
connected layer, and 1 softmax layer [12], [13]. Model training aims to minimize the error function 98 
E, the mean squared error (MSE) that quantifies the difference between the estimated (neural 99 
network outputs) and the true 10-layer geologic compositions (ground truth in-situ data). Input data 100 
include InSAR subsidence data, covering 8818 different locations, and 132 biweekly time points (5 101 
years). Here, the coarse grain percent of 10 layers was estimated.  102 

 103 

 104 
Figure 1. Geologic composition prediction using InSAR land deformation data. (A) Ground truth 105 
coarse grain ratio of the entire layer and (B) estimated coarse grain ratio. (C) Correlation between 106 

model output and ground truth at different layers of geologic composition. (D) Scatter plot 107 
between the ground truth and estimated geologic composition of the entire layer (R=0.88).   108 

3 Results 109 

We found that the InSAR remote sensing data had predictive power for geologic composition using 110 
deep neural networks (correlation coefficient R=0.88) (Figure 1). A decision tree (R=0.65) and 111 
random forest model (R=0.85) was tested as baseline. We also achieved significant accuracy with 112 
only 40% of the training data (R=0.80), suggesting that the model can be generalized to other regions 113 
for indirect estimation of geologic composition. We performed an estimation with distant data 114 
sampling (minimum distance between samples was 10km) to reduce the impact of spatial correlation 115 
of adjacent data points, and we found a slightly degraded performance (R=0.83) (Supplementary 116 
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Figure 5).  117 

4 Discussion  118 

In this study, we showed that geological composition can be estimated remotely using InSAR land 119 
deformation data. In-situ measurements of geological composition are critical to understanding 120 
hydrology and monitoring groundwater availability. However, in-situ measurements are expensive 121 
and time consuming. If geologic composition can be measured remotely using this model, high 122 
spatial resolution geologic composition can be quickly quantified only with InSAR satellites without 123 
in-situ measurements. The next step is to apply this model to other regions, including US High Plains 124 
and North China Plains, to evaluate its generalizability [14]. 125 

As a further analysis to determine which time of year contributed the most to the estimation of 126 
geologic composition, we performed a leave-one-month-out 10-fold cross-validation performance 127 
test (Figure 2). When we excluded the October and December data from the estimation model, we 128 
found a significant decline in correlation, indicating that this month contributed the most to 129 
estimating the geological composition. Most of the precipitation occurs in late autumn and winter, 130 
and precipitation has influenced time-series changes in InSAR land deformation, indirectly 131 
indicating the inner geological composition of the Central Valley. 132 
 133 

 134 
Figure 2. Leave-one-month-out 10-fold cross-validation performance test. Correlation degradation 135 

was computed as each month was excluded from the input parameters of the model. October 136 
(p=0.00175) and December (p=0.000654) showed significant degradation compared to total data 137 

correlation. The statistical significance cut-off is at p=0.004 considering Bonferroni multiple 138 
comparisons (0.05/12 comparisons=0.004). 139 

 140 

One caveat of this study is the lack of ground truth geologic composition data for independent model 141 
validation. In-situ geologic composition data from other regions (e.g., US High Plains, North China 142 
Plains) will be required for further testing. At the same time, the lack of geologic composition data 143 
points to the advantage of a significant potential applicability of this model. Our suggested model 144 
can be applicable to future missions such as NISAR and NASA’s Decadal Survey Designated 145 
Observables like Mass Change (MC) and Surface Deformation and Change (SDC) as an indirect 146 
geologic composition product [15].  147 
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Supplementary Information 190 
Supplementary Figure 1. Coarse Grain (%) of each layer from 1 to 10 in northern and southern 191 
Central Valley regions.   192 
 193 
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 194 
Supplementary Figure 2. Northern Central Valley InSAR land displacement (March 1, 2015 ~ 195 
August 31, 2020) 196 

 197 
 198 
Supplementary Figure 3. Southern Central Valley InSAR land displacement (November 8, 2014 ~ 199 
January 22, 2019) 200 

 201 
 202 
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Supplementary Figure 4. Two representative regions of the Central Valley with significant 203 
subsidence with different characteristics. (A) Chowchilla has been shown to maintain monotonically 204 
decreasing land displacements, less fluctuating groundwater depth, relatively low precipitation, and 205 
high fine-grain ratio across the middle soil layers (Displacement = -22.47 ± 10.66, Groundwater (ft) 206 
= 95.53 ± 27.69, Rain (mm) = 0.84 ± 0.80, Coarse Grain (%) = 27.44 ± 10.13). (B) Helm, on the 207 
other hand, exhibited fluctuating land displacements, relatively large seasonal changes in 208 
groundwater depth, high precipitation, and a higher overall coarse-grain ratio across all soil layers 209 
(Displacement = -40.95 ± 14.49, Groundwater (ft) =160.52 ± 65.82, Rain (mm) = 3.48 ± 3.15, 210 
Coarse Grain (%) = 40.01 ± 1.67).  211 

 212 
 213 
 214 
  215 
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Supplementary Figure 5. Geologic composition prediction with distant data sampling (minimum 216 
distance between samples was 10km) using InSAR land deformation data. Distant data sampling 217 
was performed to reduce the impact of spatial correlation of adjacent data points. Total prediction 218 
performance dropped from 0.88 to 0.83, but remained largely unchanged.  219 

 220 
 221 


