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Wind Turbines Transmission Lines

Motivating Problem

Accurate information on the location of
energy infrastructure is important for
policymakers to make climate decisions,
however key data are often lacking.

Solar Panels Storage Tanks

Proposed Solution

Object detection models trained on
remotely-sensed data.

Challenges

e Cost of acquiring and labeling data
e Generalizability of model
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Our method:

(b) Sampled turbines placed on
canvas in random location and size

(a) Sampled wind turbines

from source domain (c) Background from target
domain
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Our method:
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Experimental Design
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Results
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Current Domain Adaptation Techniques
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Comparison of Techniques by Cross-Domain Average Precision
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Key Takeaways

1. Synthetic images can help object detection models generalize to new
geographies.
2. Synthetic images can be easy to create — our technique uses unlabeled

background images and requires minimal labeled examples.
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